Association rules mining on retail data
dc.authorid | 0000-0002-2190-4135 | |
dc.authorid | 0000-0002-9430-8975 | |
dc.contributor.author | Dağaslanı, Hatice | |
dc.contributor.author | Deniz Başar, Özlem | |
dc.date.accessioned | 2024-10-12T19:42:59Z | |
dc.date.available | 2024-10-12T19:42:59Z | |
dc.date.issued | 2022 | |
dc.department | İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü, İstatistik Ana Bilim Dalı | en_US |
dc.department | İstanbul Ticaret Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, İstatistik Bölümü | |
dc.description.abstract | The development in information technologies, artificial intelligence, and data mining benefits people in many areas. With this development, data stacks are formed through the storage of ever-increasing data. Accessing useful information from the data heaps is a very difficult process. This has led to the emergence and development of the concept of data mining. In this study, the relationship between the categories of the products sold by a company in the retail sector operating in Turkey was analyzed using the Apriori algorithm, which is an algorithm used in data mining. In the application, one-day sales data of the company was used. The data obtained was provided to extract the association rules with the help of Python. In this way, the purchasing habits of customers were determined by finding meaningful relationships between products using association rules. | en_US |
dc.identifier.citation | Dağaslanı, H., & Deniz Başar, Ö. (2022). Association Rules Mining on Retail Data. EKOIST Journal of Econometrics and Statistics, 0(37), 199-211. | |
dc.identifier.doi | 10.26650/ekoist.2022.37.1145052 | |
dc.identifier.endpage | 211 | |
dc.identifier.issn | 2651-396X | |
dc.identifier.issue | 37 | en_US |
dc.identifier.startpage | 199 | |
dc.identifier.trdizinid | 1173355 | en_US |
dc.identifier.uri | https://doi.org/10.26650/ekoist.2022.37.1145052 | |
dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/1173355 | |
dc.identifier.uri | https://hdl.handle.net/11467/8705 | |
dc.identifier.volume | 0 | |
dc.identifier.wos | WOS:001322538800010 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | TR-Dizin | en_US |
dc.language.iso | en | en_US |
dc.publisher | İstanbul Üniversitesi | en_US |
dc.relation.ispartof | Ekoist-Journal Of Econometrics And Statistics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Öğrenci | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Apriori Algorithm | en_US |
dc.subject | Association Rules Analysis | en_US |
dc.subject | Data Mining | en_US |
dc.title | Association rules mining on retail data | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Association rules mining on retail data.pdf
- Boyut:
- 590.2 KB
- Biçim:
- Adobe Portable Document Format