Artificial intelligence–based COVID-19 detection using cough records

dc.authorid0000-0002-5164-7109en_US
dc.authorid0000-0001-9976-8121en_US
dc.authorid0000-0002-7788-9245en_US
dc.authorid0000-0002-2553-1911en_US
dc.contributor.authorGökcen, Alpaslan
dc.contributor.authorKaradağ, Bulut
dc.contributor.authorRiva, Cengiz
dc.contributor.authorBoyacı, Ali
dc.date.accessioned2021-07-28T11:53:28Z
dc.date.available2021-07-28T11:53:28Z
dc.date.issued2021en_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn 2019, with the emergence of coronavirus disease 2019 (COVID-19) and its spread all over the world, many people were directly affected by the pandemic. As its spread increases, it is difficult to diagnose who is actually infected. In addition to continuing vaccination studies, some technological solutions are being used to try to control the virus. One of these technological solutions is presented in this study. The disease is detected using cough data through artificial intelligence (AI). To do this, an open source data set was used from the opensigma.mit.edu website. More than 20,000 cough records representing age, gender, geographic location, and COVID-19 status are available from this site. The AI model trained on cough detection achieved 79% COVID-19 accuracy with an F1 of 80%. With the designed AI-based mobile application, COVID-19 can be detected and monitored.en_US
dc.identifier.doi10.5152/electrica.2021.21005en_US
dc.identifier.endpage208en_US
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85108873244en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage203en_US
dc.identifier.trdizinid451957en_US
dc.identifier.urihttps://hdl.handle.net/11467/5014
dc.identifier.urihttps://doi.org/10.5152/electrica.2021.21005
dc.identifier.volume21en_US
dc.identifier.wosWOS:000656762700004en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.publisherİstanbul Üniversitesi Cerrahpaşaen_US
dc.relation.ispartofElectricaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCOVID-19en_US
dc.subjectDeep Learningen_US
dc.subjectCough Detectionen_US
dc.titleArtificial intelligence–based COVID-19 detection using cough recordsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
203-208.pdf
Boyut:
1.05 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: