Artificial neural networking estimation of skin friction coefficient at cylindrical surface: a Casson flow field
dc.contributor.author | Rehman, Khalil Ur | |
dc.contributor.author | Shatanawi, Wasfi | |
dc.contributor.author | Çolak, Andaç Batur | |
dc.date.accessioned | 2023-10-30T12:28:04Z | |
dc.date.available | 2023-10-30T12:28:04Z | |
dc.date.issued | 2023 | en_US |
dc.department | Rektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezi | en_US |
dc.description.abstract | In this article, we constructed Artificial Neural Networking (ANN) models to predict values of the skin friction coefficient for two different flow regimes of non-Newtonian fluid. More specifically, flow of Casson fluid is considered toward an inclined surface with stagnation point and mixed convection effects. Energy equation is considered by means of thermal radiations, viscous dissipation, heat generation and temperature-dependent variable viscosity effects. The flow regime is carried as a two various models namely Model-I: Casson fluid flow in the presence of magnetic field and Model-II: Casson fluid flow in the absence of magnetic field. Mathematical formulation is presented for each model, and shooting method is used to obtain the numerical data of skin friction coefficient. In contrast to the Casson fluid, mixed convection, and velocities ratio parameters, the skin friction coefficient exhibits a direct relationship with the magnetic field parameter and the curvature parameter. The MoD values for both models (I, II) show that there is relatively little variation between targeted and the projected values produced from the constructed ANN models. | en_US |
dc.identifier.doi | 10.1140/epjp/s13360-023-03704-z | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.scopus | 2-s2.0-85146782337 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.uri | https://hdl.handle.net/11467/6847 | |
dc.identifier.uri | https://doi.org/10.1140/epjp/s13360-023-03704-z | |
dc.identifier.volume | 138 | en_US |
dc.identifier.wos | WOS:000921890600006 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer | en_US |
dc.relation.ispartof | European Physical Journal Plus | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrenci | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.title | Artificial neural networking estimation of skin friction coefficient at cylindrical surface: a Casson flow field | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- İsim:
- Artificial-neural-networking-estimation-of-skin-friction-coefficient-at-cylindrical-surface-a-Casson-flow-fieldEuropean-Physical-Journal-Plus.pdf
- Boyut:
- 1.41 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.56 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: