Artificial neural networking estimation of skin friction coefficient at cylindrical surface: a Casson flow field
Yükleniyor...
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer
Erişim Hakkı
info:eu-repo/semantics/embargoedAccess
Özet
In this article, we constructed Artificial Neural Networking (ANN) models to predict values of the skin friction coefficient for two different flow regimes of non-Newtonian fluid. More specifically, flow of Casson fluid is considered toward an inclined surface with stagnation point and mixed convection effects. Energy equation is considered by means of thermal radiations, viscous dissipation, heat generation and temperature-dependent variable viscosity effects. The flow regime is carried as a two various models namely Model-I: Casson fluid flow in the presence of magnetic field and Model-II: Casson fluid flow in the absence of magnetic field. Mathematical formulation is presented for each model, and shooting method is used to obtain the numerical data of skin friction coefficient. In contrast to the Casson fluid, mixed convection, and velocities ratio parameters, the skin friction coefficient exhibits a direct relationship with the magnetic field parameter and the curvature parameter. The MoD values for both models (I, II) show that there is relatively little variation between targeted and the projected values produced from the constructed ANN models.
Açıklama
Anahtar Kelimeler
Kaynak
European Physical Journal Plus
WoS Q Değeri
Q2
Scopus Q Değeri
N/A
Cilt
138
Sayı
1