Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching
dc.contributor.author | Ertaş, Gökhan | |
dc.contributor.author | Gülçür, H.Özcan | |
dc.contributor.author | Osman, Onur | |
dc.contributor.author | Uçan, Osman N. | |
dc.contributor.author | Tunacı, Mehtap | |
dc.contributor.author | Dursun, Memduh | |
dc.date.accessioned | 2020-11-21T15:51:42Z | |
dc.date.available | 2020-11-21T15:51:42Z | |
dc.date.issued | 2008 | en_US |
dc.department | İstanbul Ticaret Üniversitesi | en_US |
dc.description | PubMed ID: 17854795 | en_US |
dc.description.abstract | A novel fully automated system is introduced to facilitate lesion detection in dynamic contrast-enhanced, magnetic resonance mammography (DCE-MRM). The system extracts breast regions from pre-contrast images using a cellular neural network, generates normalized maximum intensity-time ratio (nMITR) maps and performs 3D template matching with three layers of 12 × 12 cells to detect lesions. A breast is considered to be properly segmented when relative overlap > 0.85 and misclassification rate < 0.10. Sensitivity, false-positive rate per slice and per lesion are used to assess detection performance. The system was tested with a dataset of 2064 breast MR images (344 slices × 6 acquisitions over time) from 19 women containing 39 marked lesions. Ninety-seven percent of the breasts were segmented properly and all the lesions were detected correctly (detection sensitivity = 100 %), however, there were some false-positive detections (31%/lesion, 10%/slice). © 2007 Elsevier Ltd. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.compbiomed.2007.08.001 | en_US |
dc.identifier.endpage | 126 | en_US |
dc.identifier.issn | 0010-4825 | |
dc.identifier.issue | 1 | en_US |
dc.identifier.pmid | 17854795 | en_US |
dc.identifier.scopus | 2-s2.0-37049035589 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 116 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.compbiomed.2007.08.001 | |
dc.identifier.uri | https://hdl.handle.net/11467/3499 | |
dc.identifier.volume | 38 | en_US |
dc.identifier.wos | WOS:000252918000013 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.indekslendigikaynak | PubMed | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Computers in Biology and Medicine | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | 3D template matching | en_US |
dc.subject | Cellular neural network | en_US |
dc.subject | Lesion detection | en_US |
dc.subject | MR mammography | en_US |
dc.subject | Segmentation | en_US |
dc.title | Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching | en_US |
dc.type | Article | en_US |