Multidimensional matrix characterization of equivalent double sequences
Küçük Resim Yok
Tarih
2012
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
In 1936 Hamilton presented a Silverman-Toeplitz type characterization of c?0 (i.e. the space of bounded double Pringsheim null sequences). In this paper we begin with the presentation of a notion of asymptotically statistical regular. Using this definition and the concept of maximum remaining difference for double sequence, we present the following Silverman-Toeplitz type characterization of double statistical rate of convergence: let A be a nonnegative c?0-c?0 summability matrix and let [x] and [y] be member of l? such that <img src=/fulltext-image.asp?format= htmlnonpaginated&src=572317679G4412V5-html\MediaObjects/12-2012-1206-Fig1- HTML.gif border=0/> with [x] P<0, and [y] P< ? for some ? > 0 then ?(Ax) <img src=/fulltext-image.asp?format= htmlnonpaginated&src=572317679G4412V5-html\MediaObjects/12-2012-1206-Fig2- HTML.gif border=0/> ?(Ay). In addition other implications and variations shall also be presented.
Açıklama
Anahtar Kelimeler
asymptotical statistically regular, P-convergent, Primary 42B15, Secondary 40C05
Kaynak
Studia Scientiarum Mathematicarum Hungarica
WoS Q Değeri
Q3
Scopus Q Değeri
Q3
Cilt
49
Sayı
2