Thermal and electrical analysis of batteries in electric aircraft using nanofluids

dc.contributor.authorYetik, Ozge
dc.contributor.authorKarakoc, Tahir Hikmet
dc.date.accessioned2023-02-13T09:12:49Z
dc.date.available2023-02-13T09:12:49Z
dc.date.issued2022en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractBatteries are the primary power supply for hybrid electric aircraft. The most important parameter affecting the performance, life, safety and cost of the batteries is the operating temperature. Therefore, thermal management of batteries is extremely important. The battery module (10 S, 3 P) consists of thirty prismatic lithium-ion batteries. The cooling of the battery is provided by nanofluid, which is a combination of nanoparticles and refrigerants in different mixing ratios (H2O + 3% Fe2O3, H2O + 4% Fe2O3, H2O + 6% Fe2O3), engine oil (EO + 3% Fe2O3, EO + 4% Fe2O3, EO + 6% Fe2O3). The temperatures of each of the batteries in the module are examined separately. The thermal and electrical studies of the battery model are also investigated with the volumetric ratio of the nanofluid, different input speeds and different discharge rates of the battery model. The busbar, which should not be ignored in the thermal management of the batteries, that is, the materials connecting the batteries to each other are included in the model. Air cooling, which is the traditional cooling method of the battery model, cannot bring the battery to the desired temperature range. For this reason, nanofluid cooling should be preferred. Considering the sensitivity to the volume fraction ratio, EO reacted more quickly than water. When the volume fraction ratio was increased from 3% to 6%, when the refrigerant was water, the temperature of the battery model changed by 0.05 K, and when the refrigerant was EO, there was a change of 1.15 K. Looking at all the results, they gave better results than the nanofluid EO added to the water. Considering the effect of the inlet velocity of the refrigerant on the maximum and minimum temperatures, there was a 1 K change at the maximum temperature, and a 0.2 K change at the minimum temperature (H20 + 6% Fe2O3).en_US
dc.identifier.doi10.1016/j.est.2022.104853en_US
dc.identifier.scopus2-s2.0-85130957003en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/6212
dc.identifier.urihttps://doi.org/10.1016/j.est.2022.104853
dc.identifier.volume52en_US
dc.identifier.wosWOS:000807734700008en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofJournal of Energy Storageen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBattery thermal management system; Electric aircraft; Forced convection; Maximum temperature; Nanofluidsen_US
dc.titleThermal and electrical analysis of batteries in electric aircraft using nanofluidsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1-s2.0-S2352152X2200860X-main.pdf
Boyut:
2.23 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: