A systematic review on software reliability prediction via swarm intelligence algorithms
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
The widespread integration of software into all parts of our lives has led to the need for software of higher reliability. Ensuring reliable software usually necessitates some form of formal methods in the early stages of the development process which requires strenuous effort. Hence, researchers in the field of software reliability introduced Software Reliability Growth Models (SRGMs) as a relatively inexpensive approach to software reliability prediction. Conventional parameter estimation methods of SRGMs were ineffective and left more to be desired. Consequently, researchers sought out swarm intelligence to combat its flaws, resulting in significant improvements. While similar surveys exist within the domain, the surveys are broader in scope and do not cover many swarm intelligence algorithms. Moreover, the broader scope has resulted in the occasional omission of information regarding the design for reliability predictions. A more comprehensive survey containing 38 studies and 18 different swarm intelligence algorithms in the domain is presented. Each design proposed by the studies was systematically analyzed where relevant information including the measures used, datasets used, SRGMs used, and the effectiveness of each proposed design, were extracted and organized into tables and taxonomies to be able to identify the current trends within the domain. Some notable findings include the distance-based approach providing a high prediction accuracy and an increasing trend in hybridized variants of swarm intelligence algorithms designs to predict software reliability. Future researchers are encouraged to include Mean Square Error (MSE) or Root MSE as the measures offer the largest sample size for comparison.
Açıklama
Anahtar Kelimeler
Swarm Intelligence Algorithms, Software Reliability Prediction, Software Reliability Growth Models, Evolutionary Algorithms
Kaynak
Journal Of King Saud University-Computer And Information Sciences
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
36
Sayı
7