CNN-Based Signal Detector for IM-OFDMA

dc.contributor.authorAlaca, Ozgur
dc.contributor.authorAlthunibat, Saud
dc.contributor.authorYarkan, Serhan
dc.contributor.authorMiller, Scott L.
dc.contributor.authorQaraqe, Khalid A.
dc.date.accessioned2023-01-18T12:41:48Z
dc.date.available2023-01-18T12:41:48Z
dc.date.issued2022en_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractThe recently proposed index modulation-based up-link orthogonal frequency division multiple access (IM-OFDMA) scheme has outperformed the conventional schemes in terms of spectral efficiency and error performance. However, the induced computational complexity at the receiver forms a bottleneck in real-time implementation due to the joint detection of all users. In this paper, based on deep learning principles, a convolutional neural network (CNN)-based signal detector is proposed for data detection in IM-OFDMA systems instead of the optimum Maximum Likelihood (ML) detector. A CNN-based detector is constructed with the created dataset of the IM-OFDMA transmission by offline training. Then, the convolutional neural network (CNN)-based detector is directly applied to the IM-OFMDA communication scheme to detect the transmitted signal by treating the received signal and channel state information (CSI) as inputs. The proposed CNN-based detector is able to reduce the order of the computational complexity from O(n2n) to O(n2) as compared to the ML detector with a slight impact on the error performance.en_US
dc.identifier.doi10.1109/GLOBECOM46510.2021.9685285en_US
dc.identifier.scopus2-s2.0-85184374266en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/6069
dc.identifier.urihttps://doi.org/10.1109/GLOBECOM46510.2021.9685285
dc.identifier.wosWOS:000790747201070en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2021 IEEE Global Communications Conference, GLOBECOM 2021 - Proceedingsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectconvolutional neural net-works; index modulation; Multiple access; orthogonal frequency division multiple access; signal detectionen_US
dc.titleCNN-Based Signal Detector for IM-OFDMAen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
CNN-Based_Signal_Detector_for_IM-OFDMA.pdf
Boyut:
591.23 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: