Neural networking-based analysis of heat transfer in MHD thermally slip Carreau fluid flow with heat generation

dc.contributor.authorUr Rehman, Khalil
dc.contributor.authorShatanawi, Wasfi
dc.contributor.authorÇolak, Andaç Batur
dc.date.accessioned2024-01-31T06:57:09Z
dc.date.available2024-01-31T06:57:09Z
dc.date.issued2024en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractThe formulation of heat transfer in non-Newtonian fluid models remains a topic of great interest for researchers. The ultimate flow differential equations in this direction are non-linear and hence difficult to solve analytically. Therefore, we offer state of the art determination of film effectiveness (heat transfer coefficient) by using artificial intelligence (AI). To be more specific, the Carreau fluid model is formulated at a flat surface along with thermal slip, heat generation, velocity slip, chemical reaction, and magnetohydrodynamics (MHD) effects. The developed equations are reduced by the application of the Lie symmetry approach and solved by the shooting method. The artificial neural networking model is built by using 132 sample values of the Nusselt number (NN) as an output. Porosity parameter, Prandtl number, magnetic field parameter, and heat production parameter are all inputs. 92 (70 %) is designated for training, whereas 20 (15 %) is designated for validation and testing. The Levenberg-Marquardt algorithm is used to train the neural network. The constructed artificial neural networking (ANN) is best to predict the NN at a flat surface. It is observed that for large Prandtl numbers, the magnitude of the Nusselt number is greater for porous surface, but the converse is true for magnetic field parameter.en_US
dc.identifier.doi10.1016/j.csite.2024.103995en_US
dc.identifier.scopus2-s2.0-85182900977en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/7124
dc.identifier.urihttps://doi.org/10.1016/j.csite.2024.103995
dc.identifier.volume54en_US
dc.identifier.wosWOS:001167504600001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofCase Studies in Thermal Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectHeat transfer, Carreau fluid, Thermal slip, Heat generation, Heat transfer coefficient, Artificial intelligence, Group theoretic methoden_US
dc.titleNeural networking-based analysis of heat transfer in MHD thermally slip Carreau fluid flow with heat generationen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
1-s2.0-S2214157X24000261-main.pdf
Boyut:
4.24 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: