Hyper-parameter Tuning for Quantum Support Vector Machine

dc.contributor.authorDemirtaş, Fadime
dc.contributor.authorTanyıldızı, Erkan
dc.date.accessioned2023-05-22T11:47:46Z
dc.date.available2023-05-22T11:47:46Z
dc.date.issued2022en_US
dc.departmentFakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.description.abstractIn recent years, the positive effect of quantum techniques on machine learning methods have been studied. Especially in training big data, quantum computing is beneficial in terms of speed. This study examined and applied the Quantum Support Vector Machine steps to the breast cancer dataset. Different types of feature maps used in the conversion of a classical dataset to a quantum dataset were examined using different dimensions. One of the factors that directly affect the performance of machine learning models is the correct selection of the hyper-parameters. These values must be obtained independent from the designer. Within the scope of the study, the hyper-parameter tuning methods, namely, Grid, Random, and Bayesian search methods, were examined. By using these methods, the hyper-parameters of the Support vector machine, which is one of the machine learning methods, were found. The performances of Linear, Non-linear and Quantum support vector machines were compared, and the running costs were analyzeden_US
dc.identifier.doi10.4316/AECE.2022.04006en_US
dc.identifier.endpage54en_US
dc.identifier.issue4en_US
dc.identifier.scopus2-s2.0-85150218461en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage47en_US
dc.identifier.urihttps://hdl.handle.net/11467/6623
dc.identifier.urihttps://doi.org/10.4316/AECE.2022.04006
dc.identifier.volume22en_US
dc.identifier.wosWOS:000920289700006en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherUniversitatea "Stefan cel Mare" din Suceavaen_US
dc.relation.ispartofAdvances in Electrical and Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectgrid computing; optimization; parameter estimation; quantum computing; support vector machinesen_US
dc.titleHyper-parameter Tuning for Quantum Support Vector Machineen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
93b8cba628c244d487273a3b02ea2c4f.pdf
Boyut:
556.82 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: