On absolute summability for double triangle matrices

Yükleniyor...
Küçük Resim

Tarih

2010

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a double triangle T to be a bounded operator on Ak2; i. e., T ? B (Ak2) for the sequence space Ak2 defined below. As special summability methods T we consider weighted mean and double Cesàro, (C, 1, 1), methods. As a corollary we obtain necessary and sufficient conditions for a double triangle T to be a bounded operator on the space BV of double sequences of bounded variation. © 2010 Versita Warsaw and Springer-Verlag Wien.

Açıklama

Anahtar Kelimeler

Ak spaces, Bounded operator, Double sequence space, Triangular matrices, Weighted mean methods

Kaynak

Mathematica Slovaca

WoS Q Değeri

Q4

Scopus Q Değeri

Q2

Cilt

60

Sayı

4

Künye