On absolute summability for double triangle matrices
Yükleniyor...
Tarih
2010
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a double triangle T to be a bounded operator on Ak2; i. e., T ? B (Ak2) for the sequence space Ak2 defined below. As special summability methods T we consider weighted mean and double Cesàro, (C, 1, 1), methods. As a corollary we obtain necessary and sufficient conditions for a double triangle T to be a bounded operator on the space BV of double sequences of bounded variation. © 2010 Versita Warsaw and Springer-Verlag Wien.
Açıklama
Anahtar Kelimeler
Ak spaces, Bounded operator, Double sequence space, Triangular matrices, Weighted mean methods
Kaynak
Mathematica Slovaca
WoS Q Değeri
Q4
Scopus Q Değeri
Q2
Cilt
60
Sayı
4