An approximation property of gaussian functions

dc.authoridTR19009en_US
dc.authoridTR17959en_US
dc.contributor.authorJung, Soon-Mo
dc.contributor.authorŞevli, Hamdullah
dc.contributor.authorŞevgin, Sebaheddin
dc.date.accessioned2015-09-10T08:47:18Z
dc.date.available2015-09-10T08:47:18Z
dc.date.issued2013en_US
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description.abstractUsing the power series method, we solve the inhomogeneous linear first order differential equation y'(x) + lambda(x - mu)y(x) = Sigma(infinity)(m = 0) a(m) (x - mu)(m), and prove an approximation property of Gaussian functions.en_US
dc.identifier.endpage8en_US
dc.identifier.issn1072-6691
dc.identifier.issue3
dc.identifier.scopus2-s2.0-84872824472en_US
dc.identifier.scopusqualityQ3en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/11467/1150
dc.identifier.wosWOS:000320310600003en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTexas State Univen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLinear First Order Differential Equationen_US
dc.subjectPower Series Method
dc.subjectGaussian Function
dc.subjectApproximation
dc.subjectHyers-Ulam Stability
dc.subjectLocal Hyers-Ulam Stability
dc.titleAn approximation property of gaussian functionsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
AN APPROXIMATION PROPERTY OF GAUSSIAN FUNCTIONS.pdf
Boyut:
196.34 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.71 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: