Makine Öğrenmesi Yöntemleriyle Anormal Ağ Trafiğinin Tespit Edilmesi

Küçük Resim Yok

Tarih

2019

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Bilgisayar ağlarının ve geliştirilen uygulamaların büyümesi ile saldırıların oluşturacağı hasarın belirgin olarakartması beklenmektedir. Saldırı Tespit Sistemleri (STS) sürekli büyüyen ağ saldırıları karşısında önemli savunmaaraçlarındandır. Saldırı Tespit Sistemlerinin makine öğrenmesi algoritmaları ile eğitilmesi ve eğitim sonrasıgerçek zamanlı olarak saldırıları oluştuğu anda tespit ederek, gerekli tedbirlerin alınmasını sağlamasıamaçlanmaktadır. Bu çalışmada da karar ağacı ve rastgele orman yöntemleri kullanılarak bilgisayar ağlarındaakan normal ve anormal paketlerin sınıflandırılması amaçlanmaktadır. Sınıflandırma yöntemleri, karar vermekiçin ağ trafiğinin kaydedildiği PCAP dosyasından CICFlowMeter kullanılarak çıkarılan 78 adet değişkenikullanmaktadır. Sonuçlar incelendiğinde, önerilen yöntemin bir milyonun üzerindeki kaydı %100’e yakın birbaşarıyla sınıflandırdığı ve anormal trafiğin tespitinde etkin olduğu görülmektedir.

Açıklama

Anahtar Kelimeler

Bilgisayar Bilimleri, Yazılım Mühendisliği, Endüstri Mühendisliği, Bilgisayar Bilimleri, Bilgi Sistemleri, Bilgisayar Bilimleri, Yapay Zeka

Kaynak

Düzce Üniversitesi Bilim ve Teknoloji Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

7

Sayı

1

Künye