Feature Selection for Metaheuristics Optimization Technique with Chaos
dc.contributor.author | Chaudhury, Sushovan | |
dc.contributor.author | Oyebode, Oluwadare Joshua | |
dc.contributor.author | Ngo Hoang, Dai-Long | |
dc.contributor.author | Rabbi, Fazle | |
dc.contributor.author | Ajibade, Samuel-Soma M. | |
dc.date.accessioned | 2023-01-19T11:56:55Z | |
dc.date.available | 2023-01-19T11:56:55Z | |
dc.date.issued | 2022 | en_US |
dc.department | Fakülteler, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.description.abstract | Particle swarm optimization (PSO) is a global optimization method that is extremely effective. PSO's flaws include slow convergence, premature convergence, and getting stuck at local optima. In this paper, the chaos map and dynamic-weight Particle Swarm Optimization (CPSO) are combined with PSO to improve the search process by adjusting the inertia weight of PSO and changing the position update formula in the Chaos dynamic-weight Particle Swarm Optimization (CPSO), resulting in efficient balancing for local and global PSO feature selection processes. Using eight numerical functions, the performance of CPSO was compared to that of two metaheuristic techniques which are the original PSO and Differential Evolution (DE). The results reveal that the CPSO is an efficient feature selection technique that generates good results by balancing the exploration and exploitation search processes. | en_US |
dc.identifier.doi | 10.1109/CSPA55076.2022.9781989 | en_US |
dc.identifier.endpage | 370 | en_US |
dc.identifier.scopus | 2-s2.0-85132713537 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 365 | en_US |
dc.identifier.uri | https://hdl.handle.net/11467/6094 | |
dc.identifier.uri | https://doi.org/10.1109/CSPA55076.2022.9781989 | |
dc.identifier.wos | WOS:000839140800068 | en_US |
dc.identifier.wosquality | N/A | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 2022 IEEE 18th International Colloquium on Signal Processing and Applications, CSPA 2022 - Proceeding | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.subject | Chaotic map; Differential evolution; Feature selection; Particle swarm optimization | en_US |
dc.title | Feature Selection for Metaheuristics Optimization Technique with Chaos | en_US |
dc.type | Conference Object | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- Feature_Selection_for_Metaheuristics_Optimization_Technique_with_Chaos.pdf
- Boyut:
- 4.59 MB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- Ä°sim:
- license.txt
- Boyut:
- 1.56 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: