Levenberg–Marquardt Training Technique Analysis of Thermally Radiative and Chemically Reactive Stagnation Point Flow of Non-Newtonian Fluid with Temperature Dependent Thermal Conductivity
Yükleniyor...
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
MDPI
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We have examined the magnetized stagnation point flow of non-Newtonian fluid towards an inclined cylindrical surface. The mixed convection, thermal radiation, viscous dissipation, heat generation, first-order chemical reaction, and temperature-dependent thermal conductivity are the physical effects being carried for better novelty. Mathematical equations are constructed for four different flow regimes. The shooting method is used to evaluate the heat transfer coefficient at the cylindrical surface with and without heat generation/thermal radiation effects. For better examination, we have constructed artificial neural networking models with the aid of the Levenberg– Marquardt training technique and Purelin and Tan-Sig transfer functions. The Nusselt number strength is greater for fluctuations in the Casson fluid parameter, Prandtl number, heat generation, curvature, and Eckert number when thermal radiations are present.
Açıklama
Anahtar Kelimeler
non-Newtonian fluid; heat transfer; MHD; heat generation; artificial neural networking; Levenberg–Marquardt technique
Kaynak
Mathematics
WoS Q Değeri
Q1
Scopus Q Değeri
N/A
Cilt
11
Sayı
3