Intelligent computing for the electro-osmotically modulated peristaltic pumping of blood-based nanofluid

dc.contributor.authorAkbar, Y.
dc.contributor.authorÇolak, Andaç Batur
dc.contributor.authorHuang S.
dc.contributor.authorAlshamrani A.
dc.contributor.authorAlam M.M.
dc.date.accessioned2024-07-23T13:30:38Z
dc.date.available2024-07-23T13:30:38Z
dc.date.issued2024en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractThe study delves into a novel application of artificial neural networks within the biomedical realm, specifically focusing on the peristaltic pumping of ionized blood-infused nanofluid using the Casson model. The investigation takes into account the impacts of electrokinetic forces, chemical reaction, thermal radiation and variable thermal conductivity. The endorsed nanofluid model encompasses both thermophoretic and Brownian diffusions. The Nernst-Planck and Poisson equations are used to characterize electroosmotic process. The mathematical model is then numerically solved using NDSolve in Mathematica. The variation in relevant hemodynamic characteristics concerning key flow parameters is explored through numerous graphical representations. Two distinct artificial neural networks have been developed to estimate values for rates of mass and heat transfer. The Levenberg-Marquardt algorithm is used as the training algorithm in network models with multi-layer perceptron architecture. Graphical inspection of the results demonstrates a decrease in blood flow with an elevated Helmholtz-Smoluchowski velocity. A lower pressure gradient is recorded with a higher electroosmotic parameter. Furthermore, an augmentation in the thermal conductivity parameter leads to a reduction in heat transfer rate at the wall. The concentration profile demonstrates an increase with a rise in the chemical reaction parameter. The results obtained from the neural network models exhibit an ideal harmony with the target values. The developed neural network models demonstrated the ability to predict rates of heat and mass transfer values with average deviations of ?0.01% and 0.004%, respectively.en_US
dc.identifier.doi10.1080/10407782.2024.2377698en_US
dc.identifier.scopus2-s2.0-85198379081en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/7377
dc.identifier.urihttps://doi.org/10.1080/10407782.2024.2377698
dc.identifier.wosWOS:001270977100001en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherTaylor and Francis Ltd.en_US
dc.relation.ispartofNumerical Heat Transfer; Part A: Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBlood based nanofluid; chemical reaction; electrokinetic forces; thermal radiation; variable thermal conductivityen_US
dc.titleIntelligent computing for the electro-osmotically modulated peristaltic pumping of blood-based nanofluiden_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
Intelligent-computing-for-the-electroosmotically-modulated-peristaltic-pumping-of-bloodbased-nanofluidNumerical-Heat-Transfer-Part-A-Applications.pdf
Boyut:
3.3 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: