Mass segmentation and classification from film mammograms using cascaded deep transfer learning

dc.contributor.authorTiryaki, Volkan Müjdat
dc.date.accessioned2023-05-18T08:34:44Z
dc.date.available2023-05-18T08:34:44Z
dc.date.issued2023en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractBreast cancer is the most common type of cancer among women worldwide. Early breast cancers have a high chance of cure so early diagnosis is critical. Mammography screening allows early detection of breast cancer. There has been an increasing interest in the investigation of computer-aided breast cancer diagnosis recently due in part to the development of the novel high-performing deep learning models. In this study, cascaded deep transfer learning (DTL)-based segmentation methods were investigated to segment mass lesions using mammograms of Breast Cancer Digital Repository. In the first stage, the noise sources in the mammogram background were removed by deep learning-based breast segmentation. In the second stage, the mass segmentation performances of five-layer U-net and U-nets having pre-trained weights from VGG16, ResNet50, and Xception networks in the encoding path were investigated. The performances of attention U-net, residual U-net, MultiResUnet, DeepLabV3Plus, and Unet++ were also investigated. A Unet++ model that uses Xception network weights in the encoder region is proposed. The mass segmentation model predictions were used to estimate mass lesion characterization using DTL. On the test data, an AUC of 0.7829, Dice's similarity coefficient of 0.6356 and intersection over union of 0.5408 were obtained for mass segmentation using the proposed U-net++Xception model. An AUC of 0.8188 and accuracy of 0.7619 were obtained for mass classification into benign versus malignant. The results show that the proposed DTL pipeline can be used for automatic mass segmentation and classification without using clinical data and may reduce the workload of radiologists.en_US
dc.identifier.doi10.1016/j.bspc.2023.104819en_US
dc.identifier.scopus2-s2.0-85150305176en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/6611
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2023.104819
dc.identifier.volume84en_US
dc.identifier.wosWOS:000953923400001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.relation.ispartofBiomedical Signal Processing and Controlen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBenign; Malignant; Mammography; Nodule; Radiomicsen_US
dc.titleMass segmentation and classification from film mammograms using cascaded deep transfer learningen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1-s2.0-S1746809423002525-main.pdf
Boyut:
1.69 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: