Modeling and solution of eigenvalue problems of laminated cylindrical shells consisting of nanocomposite plies in thermal environments

Yükleniyor...
Küçük Resim

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Springer Science and Business Media Deutschland GmbH

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

This work is dedicated to the modeling and solution of eigenvalue problems within shear deformation theory (SDT) of laminated cylindrical shells containing nanocomposite plies subjected to axial compressive load in thermal environments. In this study, the shear deformation theory for homogeneous laminated shells is extended to laminated shells consisting of functionally graded (FG) nanocomposite layers. The nanocomposite plies of laminated cylindrical shells (LCSs) are arranged in a piecewise FG distribution along the thickness direction. Temperature-dependent material properties of FG-nanocomposite plies are estimated through a micromechanical model, and CNT efficiency parameters are calibrated based on polymer material properties obtained from molecular dynamics simulations. After mathematical modeling, second-order time-dependent and fourth-order coordinate-dependent partial differential equations are derived within SDT, and a closed-form solution for the dimensionless frequency parameter and critical axial load is obtained for first time. After the accuracy of the applied methodology is confirmed by numerical comparisons, the unique influences of ply models, the number and sequence of plies and the temperature on the critical axial load and vibration frequency parameter within SDT and Kirchhoff–Love theory (KLT) are presented with numerical examples.

Açıklama

Anahtar Kelimeler

Laminated cylindrical shells; Nanocomposite plies; Thermal effect; Axial critical load; Frequency parameter; Shear deformation theory

Kaynak

Archive of Applied Mechanics

WoS Q Değeri

N/A

Scopus Q Değeri

N/A

Cilt

Sayı

Künye