A numerical study of thermal management of lithium-ion battery with nanofluid

dc.contributor.authorYetik, Ozge
dc.contributor.authorMorali, Ugur
dc.contributor.authorKarakoc, Tahir Hikmet
dc.date.accessioned2023-11-13T12:05:54Z
dc.date.available2023-11-13T12:05:54Z
dc.date.issued2023en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractIn this study, the NTGK model was used to evaluate the thermal and electrical analyzes of the battery model and Taguchi design was implemented to investigate the main effects of four control factors in the battery thermal management process, those are inlet velocity, mixing ratio, ambient temperature, and C-rate. The Taguchi’s L16 array was fabricated using varying control factors to obtain detailed battery temperature behaviors. As the discharge rate increased, the temperature value of the model increased, while the temperature value of the model decreased as the mixing ratio of the nanoparticle increased. As the inlet velocity of the refrigerant increases, the temperature value taken by the model decreases, while the higher the ambient temperature, the less the increase in the maximum temperature reached by the model. Also results showed that the most influential factor on both maximum battery temperature and temperature uniformity responses was the C-rate, while the least effective factor was the mixing ratio. It was found that an inlet velocity of 0.04 m/s, a mixing ratio of 5, a C-rate of 2, and an ambient temperature of 283 K will yield the lowest maximum battery temperature. The maximum battery temperature was 294 K under these conditions. On the other hand, to maximize the temperature uniformity, 0.04 m/s inlet velocity, 3 mixing ratio, 2 C-rate, and 313 K ambient temperature need to be set as processing parameters. The results showed that the C-rate has to be closely controlled during the discharge process and the influence of the mixing ratio is negligible. This study can be used as a robust guideline in the design of battery thermal management systems using nanofluids.en_US
dc.identifier.doi10.1016/j.energy.2023.129295en_US
dc.identifier.scopus2-s2.0-85173233321en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/7025
dc.identifier.urihttps://doi.org/10.1016/j.energy.2023.129295
dc.identifier.volume284en_US
dc.identifier.wosWOS:001090998600001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofEnergyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBattery thermal model, Maximum battery temperature, Temperature uniformity, Nanofluid, Orthogonal designen_US
dc.titleA numerical study of thermal management of lithium-ion battery with nanofluiden_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1-s2.0-S0360544223026890-main.pdf
Boyut:
1.36 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: