Triangles Which are Bounded Operators on A(k)
dc.contributor.author | Savaş, Ekrem | |
dc.contributor.author | Şevli, Hamdullah | |
dc.contributor.author | Rhoades, B. E. | |
dc.date.accessioned | 2020-11-21T15:54:47Z | |
dc.date.available | 2020-11-21T15:54:47Z | |
dc.date.issued | 2009 | en_US |
dc.department | İstanbul Ticaret Üniversitesi | en_US |
dc.description.abstract | A lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a triangle T : A(k) -> A(k) for the sequence space A(k) defined as follows: A(k) := {{s(n)} : (n=1)Sigma(infinity)n(k-1)vertical bar a(n)vertical bar(k) < infinity, a(n) = s(n) - s(n-1)}. | en_US |
dc.identifier.endpage | 231 | en_US |
dc.identifier.issn | 0126-6705 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-67949085176 | en_US |
dc.identifier.scopusquality | Q2 | en_US |
dc.identifier.startpage | 223 | en_US |
dc.identifier.uri | https://hdl.handle.net/11467/3893 | |
dc.identifier.volume | 32 | en_US |
dc.identifier.wos | WOS:000265913500010 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Malaysian Mathematical Sciences Soc | en_US |
dc.relation.ispartof | Bulletin of the Malaysian Mathematical Sciences Society | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Bounded operator | en_US |
dc.subject | triangular matrices | en_US |
dc.subject | A(k) spaces | en_US |
dc.subject | weighted mean methods | en_US |
dc.title | Triangles Which are Bounded Operators on A(k) | en_US |
dc.type | Article | en_US |