Triangles Which are Bounded Operators on A(k)

dc.contributor.authorSavaş, Ekrem
dc.contributor.authorŞevli, Hamdullah
dc.contributor.authorRhoades, B. E.
dc.date.accessioned2020-11-21T15:54:47Z
dc.date.available2020-11-21T15:54:47Z
dc.date.issued2009en_US
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description.abstractA lower triangular infinite matrix is called a triangle if there are no zeros on the principal diagonal. The main result of this paper gives a minimal set of sufficient conditions for a triangle T : A(k) -> A(k) for the sequence space A(k) defined as follows: A(k) := {{s(n)} : (n=1)Sigma(infinity)n(k-1)vertical bar a(n)vertical bar(k) < infinity, a(n) = s(n) - s(n-1)}.en_US
dc.identifier.endpage231en_US
dc.identifier.issn0126-6705
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-67949085176en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage223en_US
dc.identifier.urihttps://hdl.handle.net/11467/3893
dc.identifier.volume32en_US
dc.identifier.wosWOS:000265913500010en_US
dc.identifier.wosqualityQ4en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherMalaysian Mathematical Sciences Socen_US
dc.relation.ispartofBulletin of the Malaysian Mathematical Sciences Societyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBounded operatoren_US
dc.subjecttriangular matricesen_US
dc.subjectA(k) spacesen_US
dc.subjectweighted mean methodsen_US
dc.titleTriangles Which are Bounded Operators on A(k)en_US
dc.typeArticleen_US

Dosyalar