From experimental data to predictions: Artificial intelligence supported new mathematical approaches for estimating thermal conductivity, viscosity and zeta potential in Fe3O4-water magnetic nanofluids

dc.contributor.authorSahin, Fevzi
dc.contributor.authorGenc, Omer
dc.contributor.authorGokcek, Murat
dc.contributor.authorColak, Andas Batur
dc.date.accessioned2024-02-12T08:51:32Z
dc.date.available2024-02-12T08:51:32Z
dc.date.issued2023en_US
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description.abstractMagnetic nanofluids (MNs) are considered advanced heat transfer fluids of the future due to their ability to function as intelligent fluids, with the applied external magnetic field effect being readily manageable. In this study, firstly, the stabilities of Fe3O4-water MNs prepared at 0.1, 0.25, 0.5, 0.75 and 1 mass ratios were determined by zeta potential measurement. The thermal conductivity and viscosities of MNs with appropriate stability were measured at 20–60 ?C for all mass ratios. Secondly, using experimental data, two different artificial neural network (ANN) models were developed: one for thermal conductivity and viscosity depending on the temperature (20–60 ?C) and mass ratio values and one for zeta potential depending on pH and mass ratio. Finally, using the obtained ANN data, two new mathematical correlations are proposed to predict thermal conductivity and viscosity. The study’s results revealed that the developed ANN model has MSE and R values of 4.51E-06 and 0.99968, respectively, for thermal conductivity and viscosity of Fe3O4-water MNs can be accurately predicted by novel mathematical correlations.en_US
dc.identifier.doi10.1016/j.powtec.2023.118974en_US
dc.identifier.scopus2-s2.0-85171158071en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/7139
dc.identifier.urihttps://doi.org/10.1016/j.powtec.2023.118974
dc.identifier.volume430en_US
dc.identifier.wosWOS:001150061600001en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofPowder Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectFe3O4, Magnetic nanofluid, Thermal conductivity, Viscosity, Zeta potential, Artificial neural networken_US
dc.titleFrom experimental data to predictions: Artificial intelligence supported new mathematical approaches for estimating thermal conductivity, viscosity and zeta potential in Fe3O4-water magnetic nanofluidsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1-s2.0-S003259102300757X-main.pdf
Boyut:
7.38 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: