On the nonexistence of positive solutions to doubly nonlinear equations for baouendi-grushin operators

dc.contributor.authorKömbe, İsmail
dc.date.accessioned2020-11-21T15:53:47Z
dc.date.available2020-11-21T15:53:47Z
dc.date.issued2013en_US
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description.abstractThe purpose of this paper is to study the nonexistence of positive solutions of the doubly nonlinear equation -u t = r (um-1jrujp-2ru) + V um+p-2 in (0; T); u(x; 0) = u0(x) 0 in ; u(x; t) = 0 on (0; T); where r = (rx; jxj2ry), x 2 Rd; y 2 Rk, > 0, is a metric ball in RN, V 2 L1 loc(), m 2 R, 1 < p < d + k and m + p - 2 > 0. The exponents q are found and the nonexistence results are proved for q m + p < 3.en_US
dc.identifier.doi10.3934/dcds.2013.33.5167en_US
dc.identifier.endpage5176en_US
dc.identifier.issn1078-0947
dc.identifier.issue11.Decen_US
dc.identifier.scopus2-s2.0-84879403199en_US
dc.identifier.scopusqualityQ1en_US
dc.identifier.startpage5167en_US
dc.identifier.urihttps://doi.org/10.3934/dcds.2013.33.5167
dc.identifier.urihttps://hdl.handle.net/11467/3682
dc.identifier.volume33en_US
dc.identifier.wosWOS:000318966900019en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofDiscrete and Continuous Dynamical Systems- Series Aen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBaouendi-Grushin vector fieldsen_US
dc.subjectHardy inequalityen_US
dc.subjectNonlinear parabolic equationsen_US
dc.subjectPositive solutionsen_US
dc.titleOn the nonexistence of positive solutions to doubly nonlinear equations for baouendi-grushin operatorsen_US
dc.typeArticleen_US

Dosyalar