Fast diffusion equations on riemannian manifolds

dc.contributor.authorBakim, Sumeyye
dc.contributor.authorGoldstein, Gisele Ruiz
dc.contributor.authorGoldstein, Jerome A.
dc.contributor.authorKombe, Ismail
dc.date.accessioned2021-01-25T21:47:58Z
dc.date.available2021-01-25T21:47:58Z
dc.date.issued2020
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.descriptionkombe, ismail/0000-0002-7217-1023en_US
dc.descriptionWOS:000572161900004en_US
dc.description.abstractIn the present paper, we first study the nonexistence of positive solutions of the following nonlinear parabolic problem {partial derivative u/partial derivative t = Delta g(u(m)) + V(x)u(m) + lambda u(q) in Omega x (0, T), u(x, 0) = u(0)(x) >= 0 in Omega, u(x, t) = 0 on partial derivative Omega x (0, T). Here, Omega is a bounded domain with smooth boundary in a complete non-compact Riemannian manifold M, 0 < m < 1, V is an element of L-loc(1)(Omega), q > 0 and A E R. Next, we prove some Hardy and Leray type inequalities with remainders on a Riemannian Manifold M. Furthermore, we obtain explicit (sometimes optimal) constants for these inequalities and present several nonexistence results with help of Hardy and Leray type inequalities on the hyperbolic space H-n.en_US
dc.identifier.endpage526en_US
dc.identifier.issn0893-4983
dc.identifier.issue09.Octen_US
dc.identifier.scopus2-s2.0-85091502113en_US
dc.identifier.scopusqualityQ2en_US
dc.identifier.startpage507en_US
dc.identifier.urihttps://hdl.handle.net/11467/4469
dc.identifier.volume33en_US
dc.identifier.wosWOS:000572161900004en_US
dc.identifier.wosqualityQ2en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherKHAYYAM PUBL CO INCen_US
dc.relation.ispartofDIFFERENTIAL AND INTEGRAL EQUATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleFast diffusion equations on riemannian manifoldsen_US
dc.typeArticleen_US

Dosyalar