Flow control over a circular cylinder using vortex generators: Particle image velocimetry analysis and machine-learning-based prediction of flow characteristics

dc.contributor.authorOkbaz, Abdulkerim
dc.contributor.authorAksoy, Muharrem Hilmi
dc.contributor.authorKurtulmuş, Nazım
dc.contributor.authorÇolak, Andaç Batur
dc.date.accessioned2023-11-16T07:44:52Z
dc.date.available2023-11-16T07:44:52Z
dc.date.issued2023en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractControlling the flow around circular cylinders is crucial to mitigate vortex-induced vibrations and prevent structural damage in a range of applications, such as marine and offshore engineering, tall buildings, long-span bridges, transport ships, and heat exchangers. In this study, we aimed to control the turbulent flow structure around a circular cylinder by placing vortex generators (VGs). We examined the flow structure using particle image velocimetry (PIV). This enabled quantitative data acquisition, intuitive flow visualization, and drag co efficient determination from PIV data. We developed artificial neural network (ANN) models that successfully predict both mean and instantaneous flow characteristics for different scenarios. Our findings show that using VGs elongated the wake and increased vortex formation lengths while reducing velocity fluctuations and the drag coefficient. A minimum drag coefficient of 0.718 was achieved with VGs oriented at ? = 60? & ? = 60?, reducing the drag by 35.3% compared to the bare cylinder. The drag coefficient exhibited a substantial inverse correlation with both wake and vortex formation lengths. This study is significant for controlling flow structures, providing detailed insights into the near-wake region, and highlighting the potential applications of machine learning in fluid dynamics.en_US
dc.identifier.doi10.1016/j.oceaneng.2023.116055en_US
dc.identifier.scopus2-s2.0-85175001254en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/7037
dc.identifier.urihttps://doi.org/10.1016/j.oceaneng.2023.116055
dc.identifier.volume288en_US
dc.identifier.wosWOS:001106997800001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofOcean Engineeringen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Başka Kurum Yazarıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectBluff body, Flow control, Turbulence, Machine learning, Particle image velocimetry, Vortex generatorsen_US
dc.titleFlow control over a circular cylinder using vortex generators: Particle image velocimetry analysis and machine-learning-based prediction of flow characteristicsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
1-s2.0-S0029801823024393-main.pdf
Boyut:
37.2 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: