A New Approach For Residual Gravity Anomaly Profile Interpretations: Forced Neural Network (FNN)
dc.authorid | TR13219 | en_US |
dc.authorid | TR46379 | en_US |
dc.authorid | TR26113 | en_US |
dc.contributor.author | Osman, Onur | |
dc.contributor.author | Albora, A. Muhittin | |
dc.contributor.author | Uçan, Osman Nuri | |
dc.date.accessioned | 2015-09-15T07:25:46Z | |
dc.date.available | 2015-09-15T07:25:46Z | |
dc.date.issued | 2006 | en_US |
dc.department | Meslek Yüksekokulları, Meslek Yüksek Okulu, Bilgisayar Teknolojileri Bölümü | en_US |
dc.description.abstract | This paper presents a new approach for interpretation of residual gravity anomaly profiles, assuming horizontal cylinders as source. The new method, called Forced Neural Network (FNN), is introduced to determine the underground structure parameters which cause the anomalies. New technologies are improved to detect the borders If geological bodies in a reliable way. In a first phase one neuron is used to model the system and a back propagation algorithm is applied to find the density difference. In a second phase, density differences are quantified and a mean square error is computed. This process is iterated until the mean square error is small enough. After obtaining reliable results in the case of synthetic data, to simulate real data, the real case of the Gulf of Mexico gravity anomaly map, which has the form of anticline structure, is examined. Gravity anomaly values from a cross section of this real case, result to be very close to those obtained with the proposed method. | en_US |
dc.identifier.endpage | 1208 | en_US |
dc.identifier.issn | 1593-5213 | |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-34447502335 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | 1201 | en_US |
dc.identifier.uri | https://hdl.handle.net/11467/1192 | |
dc.identifier.volume | 49 | en_US |
dc.identifier.wos | WOS:000248158000006 | en_US |
dc.identifier.wosquality | Q4 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Editrice Compositori Bologna | en_US |
dc.relation.ispartof | Annals Of Geophysics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Forced Neural Network; Gravity Anomaly; Modeling; Synthetic Model; Gulf Of Mexico. | en_US |
dc.title | A New Approach For Residual Gravity Anomaly Profile Interpretations: Forced Neural Network (FNN) | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- A new approach for residual gravity anomaly profile interpretations Forced Neural Network FNN.pdf
- Boyut:
- 857.95 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama:
- Makale
Lisans paketi
1 - 1 / 1
Küçük Resim Yok
- İsim:
- license.txt
- Boyut:
- 1.71 KB
- Biçim:
- Item-specific license agreed upon to submission
- Açıklama: