Artificial Neural Networking Magnification for Heat Transfer Coefficient in Convective Non-Newtonian Fluid with Thermal Radiations and Heat Generation Effects

dc.authorid0000-0001-7492-4933en_US
dc.authorid0000-0001-9297-8134en_US
dc.contributor.authorRehman, Khalil Ur
dc.contributor.authorShatanawi, Wasfi
dc.contributor.authorÇolak, Andaç Batur
dc.date.accessioned2023-10-30T13:18:28Z
dc.date.available2023-10-30T13:18:28Z
dc.date.issued2023en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractIn this study, the Casson fluid flow through an inclined, stretching cylindrical surface is considered. The flow field is manifested with pertinent physical effects, namely heat generation, viscous dissipation, thermal radiations, stagnation point flow, variable thermal conductivity, a magnetic field, and mixed convection. In addition, the flow field is formulated mathematically. The shooting scheme is used to obtain the numerical data of the heat transfer coefficient at the cylindrical surface. Further, for comparative analysis, three different thermal flow regimes are considered. In order to obtain a better estimation of the heat transfer coefficient, three corresponding artificial neural networks (ANN) models were constructed by utilizing Tan-Sig and Purelin transfer functions. It was observed that the heat transfer rate exhibits an inciting nature for the Eckert and Prandtl numbers, curvature, and heat generation parameters, while the Casson fluid parameter, temperature-dependent thermal conductivity, and radiation parameter behave oppositely. The present ANN estimation will be helpful for studies related to thermal energy storage that have Nusselt number involvements.en_US
dc.identifier.doi10.3390/math11020342en_US
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85146747437en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/6849
dc.identifier.urihttps://doi.org/10.3390/math11020342
dc.identifier.volume11en_US
dc.identifier.wosWOS:000928402800001en_US
dc.identifier.wosqualityQ1en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofMathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - İdari Personel ve Öğrencien_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectthermal energy; mixed convection; thermal radiation; nusselt number; artificial neural networking; casson fluiden_US
dc.titleArtificial Neural Networking Magnification for Heat Transfer Coefficient in Convective Non-Newtonian Fluid with Thermal Radiations and Heat Generation Effectsen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Artificial-Neural-Networking-Magnification-for-Heat-Transfer-Coefficient-in-Convective-NonNewtonian-Fluid-with-Thermal-Radiations-and-Heat-Generation-EffectsMathematics.pdf
Boyut:
2.54 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: