Optimizing Multi Cross‐Docking Systems with a Multi‐Objective Green Location Routing Problem considering Carbon Emission and Energy Consumption

dc.contributor.authorMeidute‐kavaliauskiene, Ieva
dc.contributor.authorSütütemiz, Nihal
dc.contributor.authorYıldırım, Figen
dc.contributor.authorGhorbani, Shahryar
dc.contributor.authorČinčikaitė, Renata
dc.date.accessioned2023-01-18T08:58:29Z
dc.date.available2023-01-18T08:58:29Z
dc.date.issued2022en_US
dc.departmentFakülteler, Ticari Bilimler Fakültesi, Uluslararası Ticaret Bölümüen_US
dc.description.abstractCross-docking is an excellent way to reduce the space required to store goods, inventory management costs, and customer order delivery time. This paper focuses on cost optimization, scheduling incoming and outgoing trucks, and green supply chains with multiple cross-docking. The three objectives are minimizing total operating costs, truck transportation sequences, and carbon emissions within the supply chain. Since the linear programming model is an integer of zero and one and belongs to NP-hard problems, its solution time increases sharply with increasing dimensions. Therefore, the non-dominated sorting genetic algorithm-II (NSGA-II) and the multi-objective particle swarm optimization (MOPSO) were used to find near-optimal solutions to the problem. Then, these algorithms were compared with criteria such as execution time and distance from the ideal point, and the superior algorithm in each criterion was identified.en_US
dc.identifier.doi10.3390/en15041530en_US
dc.identifier.scopus2-s2.0-85125051538en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/6038
dc.identifier.urihttps://doi.org/10.3390/en15041530
dc.identifier.wosWOS:000824086000001en_US
dc.identifier.wosqualityQ3en_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofEnergiesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectnon-dominated sorting genetic algorithm-II (NSGA-II); multi-objective particle swarm optimization (MOPSO); cross-dockingen_US
dc.titleOptimizing Multi Cross‐Docking Systems with a Multi‐Objective Green Location Routing Problem considering Carbon Emission and Energy Consumptionen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
energies-15-01530-v2.pdf
Boyut:
2.45 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: