Numerical solutions of the Fractional Kdv-Burgers-Kuramoto equation
dc.contributor.author | Kaya, Doğan | |
dc.contributor.author | Gülbahar, Sema | |
dc.contributor.author | Yokuş, Asif | |
dc.date.accessioned | 2020-11-21T15:53:29Z | |
dc.date.available | 2020-11-21T15:53:29Z | |
dc.date.issued | 2018 | en_US |
dc.department | İstanbul Ticaret Üniversitesi | en_US |
dc.description.abstract | Non-linear terms of the time-fractional KdV-Burgers-Kuramoto equation are linearized using by some linearization techniques. Numerical solutions of this equation are obtained with the help of the finite difference methods. Numerical solutions and corresponding analytical solutions are compared. The 2 L and L8 error norms are computed. Stability of given method is investigated by using the Von Neumann stability analysis. © 2018 Society of Thermal Engineers of Serbia. | en_US |
dc.identifier.doi | 10.2298/TSCI170613281K | en_US |
dc.identifier.endpage | S158 | en_US |
dc.identifier.issn | 0354-9836 | |
dc.identifier.scopus | 2-s2.0-85046853115 | en_US |
dc.identifier.scopusquality | Q3 | en_US |
dc.identifier.startpage | S153 | en_US |
dc.identifier.uri | https://doi.org/10.2298/TSCI170613281K | |
dc.identifier.uri | https://hdl.handle.net/11467/3599 | |
dc.identifier.volume | 22 | en_US |
dc.identifier.wos | WOS:000431094700018 | en_US |
dc.identifier.wosquality | Q3 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | Serbian Society of Heat Transfer Engineers | en_US |
dc.relation.ispartof | Thermal Science | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Finite difference method | en_US |
dc.subject | Stability | en_US |
dc.subject | Time-fractional KdV-Burgers-Kuramoto equation | en_US |
dc.title | Numerical solutions of the Fractional Kdv-Burgers-Kuramoto equation | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- 0354-98361700281K.pdf
- Boyut:
- 479.47 KB
- Biçim:
- Adobe Portable Document Format
- Açıklama: