Electricity consumption forecasting using fuzzy time series

dc.contributor.authorBoltürk, Eda
dc.contributor.authorÖztayşi, Başar
dc.contributor.authorUçal Sarı, İrem
dc.date.accessioned2020-11-21T15:56:33Z
dc.date.available2020-11-21T15:56:33Z
dc.date.issued2012en_US
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description13th IEEE International Symposium on Computational Intelligence and Informatics, CINTI 2012 -- 20 November 2012 through 22 November 2012 -- Budapest -- 96765en_US
dc.description.abstractElectricity is an important issue in energy management. Because of characteristic of electricity's non-storability, management of electricity is very valuable process. In this study, a Turkish company's two years electricity consumption have examined in order to predict possible electricity consumption. We used fuzzy time series with Singh's Method. Further, with the same data we compared total values of three periods (Unified consumption amount) and total consumption forecasts with their actuals. Finally we decide that which way is more accurate with root-mean-square deviation evaluation. © 2012 IEEE.en_US
dc.identifier.doi10.1109/CINTI.2012.6496768en_US
dc.identifier.endpage249en_US
dc.identifier.isbn9781470000000
dc.identifier.scopus2-s2.0-84876938818en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage245en_US
dc.identifier.urihttps://doi.org/10.1109/CINTI.2012.6496768
dc.identifier.urihttps://hdl.handle.net/11467/4150
dc.identifier.wosWOS:000319991600041en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofCINTI 2012 - 13th IEEE International Symposium on Computational Intelligence and Informatics, Proceedingsen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdeseasonalizationen_US
dc.subjectElectricity demand forecastingen_US
dc.subjectfuzzy time seriesen_US
dc.titleElectricity consumption forecasting using fuzzy time seriesen_US
dc.typeConference Objecten_US

Dosyalar