A general approach to weighted L p rellich type inequalities related to greiner operator
dc.contributor.author | Kömbe, İsmail | |
dc.contributor.author | Yener, Abdullah | |
dc.date.accessioned | 2020-11-21T15:54:07Z | |
dc.date.available | 2020-11-21T15:54:07Z | |
dc.date.issued | 2019 | en_US |
dc.department | İstanbul Ticaret Üniversitesi | en_US |
dc.description.abstract | In this paper we exhibit some sufficient conditions that imply general weighted L p Rellich type inequality related to Greiner operator without assuming a priori symmetric hypotheses on the weights. More precisely, we prove that given two nonnegative functions a and b, if there exists a positive supersolution ? of the Greiner operator ? ? such that ? ? (a|? ? ?| p-2 ? ? ?)?b? p-1 almost everywhere in R 2n+1 ; then a and b satisfy a weighted L p Rellich type inequality. Here, p > 1 and ? ? = ? n j=1 (x 2 j +y 2 j ) is the sub-elliptic operator generated by the Greiner vector fields x j {equation presented} where (z,l)=(x,y,l)? R 2n+1 =R n ×R n ×R,|Z|={equation presented} and k ? 1. The method we use is quite practical and constructive to obtain both known and new weighted Rellich type inequalities. On the other hand, we also establish a sharp weighted L p Rellich type inequality that connects first to second order derivatives and several improved versions of two-weight L p Rellich type inequalities associated to the Greiner operator ? ? on smooth bounded domains ? in R 2n+1 . © 2019 American Institute of Mathematical Sciences. All Rights Reserved. | en_US |
dc.identifier.doi | 10.3934/cpaa.2019042 | en_US |
dc.identifier.endpage | 886 | en_US |
dc.identifier.issn | 1534-0392 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85054952423 | en_US |
dc.identifier.scopusquality | Q1 | en_US |
dc.identifier.startpage | 869 | en_US |
dc.identifier.uri | https://doi.org/10.3934/cpaa.2019042 | |
dc.identifier.uri | https://hdl.handle.net/11467/3765 | |
dc.identifier.volume | 18 | en_US |
dc.identifier.wos | WOS:000446873800015 | en_US |
dc.identifier.wosquality | Q2 | en_US |
dc.indekslendigikaynak | Web of Science | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.publisher | American Institute of Mathematical Sciences | en_US |
dc.relation.ispartof | Communications on Pure and Applied Analysis | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Greiner operator | en_US |
dc.subject | Remainder term | en_US |
dc.subject | Weighted Rellich inequality | en_US |
dc.title | A general approach to weighted L p rellich type inequalities related to greiner operator | en_US |
dc.type | Article | en_US |