New Wave Solutions for Nonlinear Differential Equations using an Extended Bernoulli Equation as a New Expansion Method

dc.contributor.authorDuran, Serbay
dc.contributor.authorKaya, Dogan
dc.date.accessioned2024-10-12T19:42:53Z
dc.date.available2024-10-12T19:42:53Z
dc.date.issued2018
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description3rd International Conference on Computational Mathematics and Engineering Sciences (CMES) -- MAY 04-06, 2018 -- Final Int Univ, Girne, CYPRUSen_US
dc.description.abstractIn this paper, we presented a new expansion method constructed by taking inspiration for the Kudryashov method. Bernoulli equation is chosen in the form of F' = BFn AF and some expansions are made on the auxiliary Bernoulli equation which is used in this method. In this auxiliary Bernoulli equation some wave solutions are obtained from the shallow water wave equation system in the general form of n-order. The obtained new results are simulated by graphically in 3D and 2D. To sum up, it is considered that this method can be applied to the several of nonlinear evolution equations in mathematics physics.en_US
dc.description.sponsorshipFirat Univ,Univ Moulay Ismail, Fac Sci Meknesen_US
dc.identifier.doi10.1051/itmconf/20182201035
dc.identifier.issn2271-2097
dc.identifier.urihttps://doi.org/10.1051/itmconf/20182201035
dc.identifier.urihttps://hdl.handle.net/11467/8638
dc.identifier.volume22en_US
dc.identifier.wosWOS:000567680300035en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherE D P Sciencesen_US
dc.relation.ispartofThird International Conference On Computational Mathematics And Engineering Sciences (Cmes2018)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.snmzWoS_2024en_US
dc.titleNew Wave Solutions for Nonlinear Differential Equations using an Extended Bernoulli Equation as a New Expansion Methoden_US
dc.typeConference Objecten_US

Dosyalar