Phishing attack types and mitigation: A survey
Küçük Resim Yok
Tarih
2023
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Science and Business Media Deutschland GmbH
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The proliferation of the internet and computing devices has drawn much attention during the Covid-19 pandemic stay home and work, and this has led the organization to adapt to staying home. Also, to let the organization work due to the infrastructure for working on proxy during the pandemic. The alarming rate of cyber-attacks, which through this study infer that phishing is one of the most effective and efficient ways for cyber-attack success. In this light, this study aims to study phishing attacks and mitigation methods in play, notwithstanding analysing performance metrics of the current mitigation performance metrics. Results indicate that business enterprises and educational institutions are the most hit using email (social engineering) and web app phishing attacks. The most effective mitigation methods are training/awareness campaigns on social engineering and using artificial intelligence/machine learning (AI/ML). To gain zero or 100% phishing mitigation, AI/ML need to be applied in large scale to measure its efficiency in phishing mitigation.
Açıklama
Anahtar Kelimeler
Artificial intelligence; Machine learning; Mitigation; Phishing; Social engineering
Kaynak
Lecture Notes on Data Engineering and Communications Technologies
WoS Q Değeri
Scopus Q Değeri
N/A
Cilt
165