Classification of Buried Objects Using Deep Learning on GPR Data

dc.contributor.authorSezgin, Mehmet
dc.contributor.authorAlpdemir, Mahmut Nedim
dc.date.accessioned2023-11-10T09:18:34Z
dc.date.available2023-11-10T09:18:34Z
dc.date.issued2023en_US
dc.departmentFakülteler, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractIn this study, we present the results of two-class identification of buried objects using convolutional neural networks on real GPR dataset with 1080 images. The dataset includes GPR images of clutter objects and surrogate mines. While clutter class consist of stones, cans, bottles, nails and similar objects, the surrogate mine class consists of metallic and non-metallic anti-personnel and anti-tank surrogate mines. We obtained nearly 100% classification results for two-class classification.en_US
dc.identifier.doi10.1109/IC_ASET58101.2023.10150717en_US
dc.identifier.scopus2-s2.0-85164254166en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/6986
dc.identifier.urihttps://doi.org/10.1109/IC_ASET58101.2023.10150717
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings of the 2023 IEEE International Conference on Advanced Systems and Emergent Technologies, IC_ASET 2023en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectGround penetrating radar, identification, convolutional neural networken_US
dc.titleClassification of Buried Objects Using Deep Learning on GPR Dataen_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
Classification_of_Buried_Objects_Using_Deep_Learning_on_GPR_Data.pdf
Boyut:
3.43 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: