Close-to-convex functions defined by fractional operator
dc.contributor.author | Aydog?an, Melike | |
dc.contributor.author | Kahramaner, Yasemin | |
dc.contributor.author | Polatoğlu, Yaşar | |
dc.date.accessioned | 2020-11-21T15:55:29Z | |
dc.date.available | 2020-11-21T15:55:29Z | |
dc.date.issued | 2013 | en_US |
dc.department | İstanbul Ticaret Üniversitesi | en_US |
dc.description.abstract | Let S denote the class of functions f(z) = z + a2z2+... analytic and univalent in the open unit disc D = {z ? C | en_US |
dc.description.abstract | z|<1}. Consider the subclass and S* of S, which are the classes ofconvex and starlike functions, respectively. In 1952, W. Kaplan introduced a class of analyticfunctions f(z), called close-to-convex functions, for which there exists?(Z) ? C, depending on f(z) with Re( f?(z)/??(z) ) > 0 in , and prove that every close-to-convex function is univalent. The normalized class of close-to-convex functions denoted by K. These classesare related by the proper inclusions C ? S* ? K ? S. In this paper, we generalize the close-to-convex functions and denote K(?) the class of such functions. Various properties of this class of functions is alos studied.©2013 Melike Aydog?an et al. | en_US |
dc.identifier.endpage | 2775 | en_US |
dc.identifier.issn | 1312885X | |
dc.identifier.issue | 53-56 | en_US |
dc.identifier.scopus | 2-s2.0-84877150517 | en_US |
dc.identifier.scopusquality | N/A | en_US |
dc.identifier.startpage | 2769 | en_US |
dc.identifier.uri | https://hdl.handle.net/11467/4005 | |
dc.identifier.volume | 7 | en_US |
dc.indekslendigikaynak | Scopus | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | Applied Mathematical Sciences | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Close-to-convex | en_US |
dc.subject | Convex | en_US |
dc.subject | Fractional calculus | en_US |
dc.subject | Starlike | en_US |
dc.title | Close-to-convex functions defined by fractional operator | en_US |
dc.type | Article | en_US |