Close-to-convex functions defined by fractional operator

dc.contributor.authorAydog?an, Melike
dc.contributor.authorKahramaner, Yasemin
dc.contributor.authorPolatoğlu, Yaşar
dc.date.accessioned2020-11-21T15:55:29Z
dc.date.available2020-11-21T15:55:29Z
dc.date.issued2013en_US
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description.abstractLet S denote the class of functions f(z) = z + a2z2+... analytic and univalent in the open unit disc D = {z ? Cen_US
dc.description.abstractz|<1}. Consider the subclass and S* of S, which are the classes ofconvex and starlike functions, respectively. In 1952, W. Kaplan introduced a class of analyticfunctions f(z), called close-to-convex functions, for which there exists?(Z) ? C, depending on f(z) with Re( f?(z)/??(z) ) > 0 in , and prove that every close-to-convex function is univalent. The normalized class of close-to-convex functions denoted by K. These classesare related by the proper inclusions C ? S* ? K ? S. In this paper, we generalize the close-to-convex functions and denote K(?) the class of such functions. Various properties of this class of functions is alos studied.©2013 Melike Aydog?an et al.en_US
dc.identifier.endpage2775en_US
dc.identifier.issn1312885X
dc.identifier.issue53-56en_US
dc.identifier.scopus2-s2.0-84877150517en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.startpage2769en_US
dc.identifier.urihttps://hdl.handle.net/11467/4005
dc.identifier.volume7en_US
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.relation.ispartofApplied Mathematical Sciencesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClose-to-convexen_US
dc.subjectConvexen_US
dc.subjectFractional calculusen_US
dc.subjectStarlikeen_US
dc.titleClose-to-convex functions defined by fractional operatoren_US
dc.typeArticleen_US

Dosyalar