Veri madenciliği teknikleri ile telekom sektöründe ayrılan müşteri analizi
Yükleniyor...
Dosyalar
Tarih
2017
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
İstanbul Ticaret Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Veri madenciliği, çok büyük veri kümeleri içinden anlamlı bilgi çıkartma sürecidir. Günümüzde de hızla gelişmekte olan bir tekniktir. Bu teknikte; bir ön işlemden sonra veriler arasındaki ilişki kullanılarak bir model oluşturulur. Son aşamada ise oluşturulan model yorumlanır. Veri madenciliğinin yaygın olarak kullanıldığı alanlardan biri de ayrılma eğilimi gösteren müşterilerin analizidir. Bu tez çalışmasında, telekom sektörüne ait müşterilerden ayrılma eğilimi gösteren müşteriler analiz edilerek; ayrılma eğilimi gösteren müşteriler tahmin edilmiştir. Ayrılan müşteri analizi için sınıflandırma algoritmaları ve nitelik seçimi teknikleri kullanıldı. Karşılaştırmalar sonucunda %94.41 ile en yüksek doğruluk oranına sahip algoritma, ham dataya uygulanan J.48 algoritması olmuştur.
Data mining is the process of obtaining meaningful data from vast amount and very large data sets. It is also a rapidly developing technique nowadays. In this technique; after preporcessing a model is created by using the relationship between data. In the last stage; the generated model is interpreted. One of the widely used field of data mining is the analysis of customer tending to churn. In this thesis study, the customers of telecom sector churn tendency is estimated while analysing them accordingly. Classification algorithms and attribute selection techniques are utilized for churn analysis. The algorithm which has the highest accuracy rate amongs the compared algorithm is determined as J48 with %94.41 accuracy.
Data mining is the process of obtaining meaningful data from vast amount and very large data sets. It is also a rapidly developing technique nowadays. In this technique; after preporcessing a model is created by using the relationship between data. In the last stage; the generated model is interpreted. One of the widely used field of data mining is the analysis of customer tending to churn. In this thesis study, the customers of telecom sector churn tendency is estimated while analysing them accordingly. Classification algorithms and attribute selection techniques are utilized for churn analysis. The algorithm which has the highest accuracy rate amongs the compared algorithm is determined as J48 with %94.41 accuracy.
Açıklama
Tez (Yüksek Lisans) -- İstanbul Ticaret Üniversitesi -- Kaynakça var.
Anahtar Kelimeler
Tüketici memnuniyeti_Araştırma_İstatistiksel metotlar, Tüketici memnuniyeti_Değerlendirme, Tüketiciler_Araştırma_İstatistiksel metodlar, Tüketiciler_Araştırma_Bilgi işlem, Örnekleme (İstatistik)_Değerlendirme, Consumer satisfaction_Research_Statistical methods, Consumer satisfaction_Evaluation, Consumers_Research_Statistical methods, Consumers_Research_Data processing, Sampling (Statistics)_Evaluation
Kaynak
WoS Q Değeri
Scopus Q Değeri
Cilt
Sayı
Künye
Odabaş, Özlem. (2017). Veri madenciliği teknikleri ile telekom sektöründe ayrılan müşteri analizi. (Yayımlanmamış yüksek lisans tezi). İstanbul Ticaret Üniversitesi, Fen Bilimleri Enstitüsü, Bilgisayar Mühendisliği, İstanbul