Application of artificial intelligence techniques for heat exchanger predictions in food industry
Küçük Resim Yok
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/restrictedAccess
Özet
Heat exchangers (HEXs) are deployed in diverse engineering applications, such as cooling and refrigeration systems; power plants; and automotive, chemical, textile, and food industries. Understanding the principles and fluid-to-fluid heat exchange geometry can be complex. Researchers usually apply the first and second laws of thermodynamics to conduct numerical, analytical, and experimental techniques on HEXs. Experimental approaches tend to be costlier due to setup expenses, while theoretical and numerical analyses rely heavily on assumptions and complex equations. To address these challenges, artificial intelligence (AI) models have emerged as a promising solution for modeling, optimization, and performance estimation of thermal systems employing HEXs. In the last 30 years, AI-based approaches have gained widespread adoption in thermal analysis of HEXs, building upon past research. Three main types of thermal analysis have been reported: single-phase flow, two-phase flow, and machine learning-based physical property evaluation. AI approaches have proven effective in estimating crucial HEX parameters like pressure drop (?P), heat transfer coefficient (h), friction factor (f), and Nusselt number (Nu). They have also demonstrated success in assessing phase change characteristics during fluid boiling and condensation processes, as well as identifying two-phase flows. Despite these advancements, it is emphasized that more work remains to fully harness AI’s potential for thermal analysis of HEXs. As AI gains traction, it presents itself as a valuable technology for enhancing the study of HEXs with satisfactory results.
Açıklama
Anahtar Kelimeler
Artificial intelligence (AI); Artificial neural network (ANN); Food industry; Genetic algorithm (GA); Heat exchanger; Nanoemulsions; Nanoparticles
Kaynak
Advanced Materials based Thermally Enhanced Phase Change Materials: Fundamentals and Applications
WoS Q Değeri
Scopus Q Değeri
N/A