An anomaly detection study for the smart home environment

dc.contributor.authorBilgin, Mehmet Erhan
dc.contributor.authorKilinc, H.Hakan
dc.contributor.authorZaim, Abdul Halim
dc.date.accessioned2023-01-30T10:44:37Z
dc.date.available2023-01-30T10:44:37Z
dc.date.issued2022en_US
dc.departmentRektörlük, Bilişim Teknolojileri Uygulama ve Araştırma Merkezien_US
dc.description.abstractUnusual sensor data in smart homes may herald different problems based on sensor errors, security vulnerabilities, activity and behavior changes. This study focuses on detecting anomalies and unusual situations in 7 different sensor data in a house. For this, a model created with a combination of unsupervised and supervised machine learning algorithms is used. The sensor data are labeled using Isolation Forest which is one of the unsupervised algorithms. Then, the data is trained with the supervised algorithms Decision Tree, Extra Trees, Random Forest and XGBoost classification algorithms. Anomaly decisions are made with an accuracy of over 99 percent.en_US
dc.identifier.doi10.1109/UBMK55850.2022.9919448en_US
dc.identifier.scopus2-s2.0-85141836847en_US
dc.identifier.scopusqualityN/Aen_US
dc.identifier.urihttps://hdl.handle.net/11467/6163
dc.identifier.urihttps://doi.org/10.1109/UBMK55850.2022.9919448
dc.indekslendigikaynakScopusen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartofProceedings - 7th International Conference on Computer Science and Engineering, UBMK 2022en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectMachine Learning, Anomaly Detection, Smart Home, Edge Computing, IoTen_US
dc.titleAn anomaly detection study for the smart home environmenten_US
dc.typeConference Objecten_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
An_Anomaly_Detection_Study_for_the_Smart_Home_Environment.pdf
Boyut:
560.25 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
Ä°sim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: