Symmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equation

dc.contributor.authorIskenderoglu, Gulistan
dc.contributor.authorKaya, Doğan
dc.date.accessioned2021-01-25T21:48:10Z
dc.date.available2021-01-25T21:48:10Z
dc.date.issued2019
dc.departmentİstanbul Ticaret Üniversitesien_US
dc.description.abstractMany physical phenomena in nature can be described or modeled via a differential equation or a system of differential equations. In this work, we restrict our attention to research a solution of fractional nonlinear generalized Burgers’ differential equations. Thereby we find some exact solutions for the nonlinear generalized Burgers’ differential equation with a fractional derivative, which has domain as $\mathbb{R}^2$ ×$\mathbb{R}^+$. Here we use the Lie groups method. After applying the Lie groups to the boundary value problem we get the partial differential equations on the domain $\mathbb{R}^2$ with reduced boundary and initial conditions. Also, we find conservation laws for the nonlinear generalized Burgers’ differential equation.en_US
dc.identifier.doi10.33401/fujma.598107en_US
dc.identifier.endpage147en_US
dc.identifier.issn2645-8845
dc.identifier.issn2645-8845
dc.identifier.issue2en_US
dc.identifier.startpage139en_US
dc.identifier.trdizinid355583en_US
dc.identifier.urihttps://doi.org10.33401/fujma.598107
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TXpVMU5UZ3pNdz09
dc.identifier.urihttps://hdl.handle.net/11467/4544
dc.identifier.volume2en_US
dc.indekslendigikaynakTR-Dizinen_US
dc.language.isoenen_US
dc.relation.ispartofFundamental journal of mathematics and applications (Online)en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleSymmetry Analysis and Conservation Laws of the Boundary Value Problems for Time-Fractional Generalized Burgers’ Differential Equationen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
0eb5edb5-445f-40f1-acf1-a09acf78614a.pdf
Boyut:
153.99 KB
Biçim:
Adobe Portable Document Format
Açıklama: