Symmetry solution on fractional equation
dc.authorid | 0000-0001-7322-1339 | |
dc.authorid | 0000-0002-8400-5313 | |
dc.contributor.author | İskandarova, Gülistan | |
dc.contributor.author | Kaya, Doğan | |
dc.date.accessioned | 2024-10-12T19:51:19Z | |
dc.date.available | 2024-10-12T19:51:19Z | |
dc.date.issued | 2017 | |
dc.department | İstanbul Ticaret Üniversitesi, İnsan ve Toplum Bilimleri Fakültesi, Matematik Bölümü | en_US |
dc.description.abstract | As we know nearly all physical, chemical, and biological processes in naturecan be described or modeled by dint of a differential equation or a system ofdifferential equations, an integral equation or an integro-differential equation.The differential equations can be ordinary or partial, linear or nonlinear. So,we concentrate our attention in problem that can be presented in terms of adifferential equation with fractional derivative. Our research in this work is touse symmetry transformation method and its analysis to search exact solutionsto nonlinear fractional partial differential equations. | en_US |
dc.identifier.citation | Iskandarova, G., & Kaya, D. (2017). Symmetry Solution on Fractional Equation. An International Journal of Optimization and Control: Theories & Applications (IJOCTA), 7(3), 255-259. | |
dc.identifier.endpage | 259 | en_US |
dc.identifier.issn | 2146-0957 | |
dc.identifier.issn | 2146-5703 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 255 | en_US |
dc.identifier.trdizinid | 271213 | en_US |
dc.identifier.uri | https://search.trdizin.gov.tr/tr/yayin/detay/271213 | |
dc.identifier.uri | https://hdl.handle.net/11467/9138 | |
dc.identifier.volume | 7 | en_US |
dc.indekslendigikaynak | TR-Dizin | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | An International Journal of Optimization and Control: Theories & Applications (IJOCTA) | en_US |
dc.relation.publicationcategory | Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Riemann-Liouville Fractional Derivative | en_US] |
dc.subject | Lie Groups | en_US] |
dc.subject | Mittag-Leffler Function | |
dc.title | Symmetry solution on fractional equation | en_US |
dc.type | Article | en_US |
Dosyalar
Orijinal paket
1 - 1 / 1
Yükleniyor...
- İsim:
- Symmetry solution on fractional equation.pdf
- Boyut:
- 181.94 KB
- Biçim:
- Adobe Portable Document Format