ATM’lerdeki nakite yönelik talep tahmini üzerine sistematik yazın analizi

Yükleniyor...
Küçük Resim

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

İstanbul Ticaret Üniversitesi

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Otomatik Vezne Makineleri, yaygın kullanılan ismi ile ATM’ler, bankacılık sektörünün en önemli servis kollarından birini oluşturmaktadır. Özellikle COVID-19 sürecinde, bankalar birçok şube içi işlemi bu makinelere kaydırmış, para çekme ve yatırma limitleri arttırılarak bu temassız servis noktasının kullanımını teşvik etmiştir. Bu makinelerde gerçekleşen nakit akışlarına yönelik yapılan talep tahminleri, herhangi bir üründen ziyade direk olarak nakit parayı hedef aldığından, katma değeri yüksek zorlu bir süreci oluşturmakla beraber; problemin karşıt amaçlarını ise, yeterli miktarda nakit bulunmaması durumunda müşteri ihtiyacının giderilememesi ve buna karşılık makine içerisindeki paranın banka tarafından herhangi bir yatırım aracında değerlendirilmemesi oluşturmaktadır. Bu çalışma kapsamında, günümüze kadar ATM talep tahmini üzerine yapılmış çalışmalar, veri yapısı, tahmin yöntemi, karşılaşılan sıkıntılar, alternatif modeller, tahmin dönemi gibi çeşitli başlıklarda sınıflandırılmakta, henüz değinilmemiş noktalar belirtilerek bundan sonraki çalışmalara zemin hazırlanmaktadır. Özellikle talep tahmininde makine öğrenmesi yöntemlerinin yaygın olarak kullanıldığı ve bu yöntemlerin sonuçlarının istatistiksel tahmin yöntemleri çıktıları ile karşılaştırıldığı tespit edilmiştir. Çalışmaların büyük bir çoğunluğu ortak bir açık veri seti kullanmakta ve karşılaştırılabilir sonuçlar sunmaktadır. Bildiğimiz kadarı ile bu çalışma, tasvir ettiğimiz alanda yapılan ilk yazın taraması olmakta, aynı zamanda ülkemizde henüz üzerinde durulmamış bir alanı işaret etmektedir.
Automated Teller Machines, ATM’s, constitute one of the most important service branches of the banking sector. During COVID-19, banks shifted many in-branch transactions to these machines and encouraged the use of this contactless service point by increasing the deposit and withdrawal limits. Demand forecasts for cash flows in these machines create a challenging process with high added value as they target cash directly. The contradictory objectives of the problem are that if the cash is not available, the customer need cannot be met, but the stocked money may not evaluated in any investment instrument. Within the scope of this study, the studies on ATM demand forecasting are classified under various topics such as data structure, forecasting method, alternative models, forecasting horizon, and the backgrounds for future studies are prepared by stating untouched points. Especially, it has been observed that machine learning methods are widely used in the literature and their results are compared with the outcomes of the statistical forecasting techniques. Most of the studies employ a common public data set and provide comparable results. To the best of our knowledge, this study is the first literature review in this field, and also marks an area that has not been addressed yet in our country.

Açıklama

Anahtar Kelimeler

ATM Yönetimi, Nakit Yönetimi, Talep Tahmini, Finansal Optimizasyon, ATM Management, Cash Management, Demand Forecasting, Financial Optimization

Kaynak

İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi

WoS Q Değeri

Scopus Q Değeri

Cilt

20

Sayı

40

Künye