Determining the best estimation model with tree-based machine learning methods: Implementation on customer spendings for e-commerce websites

dc.contributor.authorYalçın, Mehmet
dc.contributor.authorBağdatlı Kalkan, Seda
dc.date.accessioned2023-02-23T12:10:50Z
dc.date.available2023-02-23T12:10:50Z
dc.date.issued2022en_US
dc.departmentFakülteler, İnsan ve Toplum Bilimleri Fakültesi, İstatistik Bölümüen_US
dc.description.abstractIndividuals who can easily access Internet have turned to online shopping instead of shopping in physical stores as a result of the development of technology. Individuals’ tendency for online shopping has improved the e-commerce sector. Factors such as ability to realize global sales, reduction in physical store expenses, ability to realize 24/7 sales, online and low-cost stock tracking make e-commerce important. Since they use Internet channels in purchasing, the mobility of the customers is also monitored and the behavior of the customers is reflected as data. Thus, the number of studies that predicts the purchasing behavior of customers increases along with prediction models.en_US
dc.identifier.doi10.17654/0972361722029en_US
dc.identifier.endpage109en_US
dc.identifier.startpage91en_US
dc.identifier.urihttps://hdl.handle.net/11467/6307
dc.identifier.urihttps://doi.org/10.17654/0972361722029
dc.identifier.volume75en_US
dc.identifier.wosWOS:000886753100006en_US
dc.identifier.wosqualityN/Aen_US
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isoenen_US
dc.publisherPushpa Publishing Houseen_US
dc.relation.ispartofAdvances and Applications in Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjecttree-based models, e-commerce, machine learning, ensemble learningen_US
dc.titleDetermining the best estimation model with tree-based machine learning methods: Implementation on customer spendings for e-commerce websitesen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
0972361722029.pdf
Boyut:
231.64 KB
Biçim:
Adobe Portable Document Format
Açıklama:
Lisans paketi
Listeleniyor 1 - 1 / 1
Küçük Resim Yok
İsim:
license.txt
Boyut:
1.56 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: