Variance reduction via importance sampling
Yükleniyor...
Dosyalar
Tarih
2006
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
İstanbul Ticaret Üniversitesi
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Variability always occurs to be the most frighteningphenomena in implementation of various kinds of experiments. We desire to control variability and decrease the variance of experiments in order to be aware of the accuracy of the constructed models and consequently supply reliable results. Importance Sampling, also called Biased Sampling is one of the variance reduction techniques especially used in Monte Carlo Methods. This study includes a research to gather the appropriate importance sampling density which gives the lowest variance. We illustrate the importance sampling method on an M/M/1 queuing problem involving a limited waiting capacity of 50 of buffer size and solve it with an efficient C coded simulation program. We first execute naïve simulation, afterwards we carried out importance sampling method and supplied meaningful decrease in the estimated variance of the case which queue length ever exceeds buffer size. By this way, one can calculate any expectation that cannot be calculated by analytically. Numerical results indicate that longer tailed proposal distributions provide much more meaningful decrease.
Değişkenlik veya rassal sayılara bağlı hata çeşitli deneylerde ortaya çıkan en korkutucu problemlerdendir. Gerçeğe uygun modeller kurup bunlardan güvenilir sonuçlar elde etmek istenir. Bunun için Monte Carlo uygulamalarında tahmini varyansı azaltan Taraflı Örnekleme (Importance Sampling) yöntemi kullanılabilir. Bu çalışmada en az varyansı veren dağılımlar bulunmaya çalışılmıştır. Bunun için basit bir M/M/1 kuyruk sistemi benzetim modellemesi ile analiz edilmiş ve 50 birimlik bir ön tamponun dolup aşılma olasılığı bulunmaya çalışılmıştır. Önce basit Monte Carlo benzetim modeli daha sonar Taraflı Örnekleme benzetim modeli kullanılarak sonuçlar alınmıştır ve sayısal sonuçlar daha uzun kuyruğa sahip dağılımların daha olumlu sonuç verdiğini göstermiştir.
Değişkenlik veya rassal sayılara bağlı hata çeşitli deneylerde ortaya çıkan en korkutucu problemlerdendir. Gerçeğe uygun modeller kurup bunlardan güvenilir sonuçlar elde etmek istenir. Bunun için Monte Carlo uygulamalarında tahmini varyansı azaltan Taraflı Örnekleme (Importance Sampling) yöntemi kullanılabilir. Bu çalışmada en az varyansı veren dağılımlar bulunmaya çalışılmıştır. Bunun için basit bir M/M/1 kuyruk sistemi benzetim modellemesi ile analiz edilmiş ve 50 birimlik bir ön tamponun dolup aşılma olasılığı bulunmaya çalışılmıştır. Önce basit Monte Carlo benzetim modeli daha sonar Taraflı Örnekleme benzetim modeli kullanılarak sonuçlar alınmıştır ve sayısal sonuçlar daha uzun kuyruğa sahip dağılımların daha olumlu sonuç verdiğini göstermiştir.
Açıklama
Anahtar Kelimeler
Variance Reduction, Importance Sampling, Monte Carlo Simulation, M/M/1 Queue, Varyans Azaltma, Taraflı Örnekleme, Monte Carlo Benzetim, M/M/1 Kuyruk Modeli
Kaynak
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi
WoS Q Değeri
Scopus Q Değeri
Cilt
5
Sayı
11