Yazar "Kaid, Noureddine" seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe Optimal backstepping-fopıd controller design for wheeled mobile robot(International Information and Engineering Technology Association, 2022) Euldji, Rafik; Batel, Noureddine; Rebhi, Redha; Kaid, Noureddine; Tearnbucha, Chutarat; Sudsutad, Weerawat; Lorenzini, Giulio; Ahmad, Hijaz; Ameur, Houari; Menni, YounesA design of an optimal backstepping fractional order proportional integral derivative (FOPID) controller for handling the trajectory tracking problem of wheeled mobile robots (WMR) is examined in this study. Tuning parameters is a challenging task, to overcome this issue a hybrid meta-heuristic optimization algorithm has been utilized. This evolutionary technique is known as the hybrid whale grey wolf optimizer (HWGO), which benefits from the performances of the two traditional algorithms, the whale optimizer algorithm (WOA) and the grey wolf optimizer (GWO), to obtain the most suitable solution. The efficiency of the HWGO algorithm is compared against those of the original algorithms WOA, GWO, the particle swarm optimizer (PSO), and the hybrid particle swarm grey wolf optimizer (HPSOGWO). The simulation results in MATLAB–Simulink environment revealed the highest efficiency of the suggested HWGO technique compared to the other methods in terms of settling and rise time, overshoot, as well as steady-state error. Finally, a star trajectory is made to illustrate the capability of the mentioned controllerÖğe Study of the effect of ACL anode catalytic layer porosity on the efficiency of a direct methanol fuel cell(International Information and Engineering Technology Association, 2022) Medkour, Mihoub; Kaid, Noureddine; Ameur, Houari; Tearnbucha, Chutarat; Sudsutad, Weerawat; Lorenzini, Giulio; Ahmad, Hijaz; Menni, YounesThe current work investigates the efficiency of a Direct Methanol Fuel Cell (DMFC) by using COMSOL. The set-up model takes into consideration the electrochemical kinetics and chemical reactions. The anode catalyst layers are a main element in the PEM fuel cell; their porosity significantly affects the fuel cell efficiency. We focus on the impact of catalytic layers porosity on the battery efficiency. As claimed by the results, the porosity of catalytic layer greatly affects the performance of the battery. In addition, better output performance of µDMFC may be obtained when the catalytic layer porosity is chosen as ?ACL=0.009-0.1. The distributions of methanol, carbon dioxide, water, oxygen, polarization, and the current density are plotted to highlight the impact of porosity on the global performances.