Yazar "Ibrahim, Yasser E." seçeneğine göre listele
Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
Öğe An Intelligent Approach for Predicting Mechanical Properties of High-Volume Fly Ash (HVFA) Concrete(CEJ PUBLISHING GROUP, 2023) Adamu, Musa; Çolak, A. Batur; Umar, Ibraim K.; Ibrahim, Yasser E.; Hamza, Mukhtar F.Plastic waste (PW) is a major soild waste, which its generation continues to increase globally year in and year out. Proper management of the PW is still a challenge due to its non-biodegradable nature. One of the most convenient ways of managing plastic waste is by using it in concrete as a partial substitute for natural aggregate. However, the main shortcomings of adding plastic waste to concrete are a reduction in strength and durability. Hence, to reduce the undesirable impact of the PW in concrete, highly reactive additives are normally added. In this research, 240 experimental datasets were used to train an artificial neural network (ANN) model using Levenberg Marquadt algorithms for the prediction of the mechanical properties and durability of high-volume fly ash (HVFA) concrete containing fly ash and PW as partial substitutes for cement and coarse aggregate, respectively, and graphene nanoplatlets (GNP) as additives to cementitious materials. The optimized model structure has five input parameters, 17 hidden neurons, and one output layer for each of the physical parameters. The results were analyzed graphically and statistically. The obtained results revealed that the generated network model can forecast with deviations less than 0.48%. The efficiency of the ANN model in predicting concrete properties was compared with that of the SVR (support vector regression) and SWLR (stepwise regression) models. The ANN outperformed SVR and SWLR for all the models by up to 6% and 74% for SVR and SWLR, respectively, in the confirmation stage. The graphical analysis of the results further demonstrates the higher prediction ability of the ANN.Öğe Prediction of Mechanical Properties of Rubberized Concrete Incorporating Fly Ash and Nano Silica by Artificial Neural Network Technique(MDPI, 2023) Adamu, Musa; Çolak, Andaç Batur; Ibrahim, Yasser E.; Haruna, Sadi I.; Hamza, Mukhtar FatihuThe use of enormous amounts of material is required for production. Due to the current emphasis on the environment and sustainability of materials, waste products and by-products, including silica fume and fly ash (FA), are incorporated into concrete as a substitute partially for cement. Additionally, concrete fine aggregate has indeed been largely replaced by waste materials like crumb rubber (CR), thus it reduces the mechanical properties but improved some other properties of the concrete. To decrease the detrimental effects of the CR, concrete is therefore enhanced with nanomaterials such nano silica (NS). The concrete mechanical properties are essential for the designing and constRuction of concrete structures. Concrete with several variables can have its mechanical characteristics predicted by an artificial neural network (ANN) technique. Using ANN approaches, this paper predict the mechanical characteristics of concrete constructed with FA as a partial substitute for cement, CR as a partial replacement for fine aggregate, and NS as an addition. Using an artificial neural network (ANN) technique, the mechanical characteristics investigated comprise splitting tensile strength (Fs), compressive strength (Fc), modulus of elasticity (Ec) and flexural strength (Ff). The ANN model was used to train and test the dataset obtained from the experimental program. Fc, Fs, Ff and Ec were predicted from added admixtures such as CR, NS, FA and curing age (P). The modelling result indicated that ANN predicted the strength with high accuracy. The proportional deviation mean (MoD) values calculated for Fc, Fs, Ff and Ec values were ?0.28%, 0.14%, 0.87% and 1.17%, respectively, which are closed to zero line. The resulting ANN model’s mean square error (MSE) values and coefficient of determination (R2 ) are 6.45 × 10?2 and 0.99496, respectively.