Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Flores, Denis Dante Corilla" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Application of Machine Learning in Renewable Energy: A Bibliometric Analysis of a Decade
    (Institute of Electrical and Electronics Engineers Inc., 2023) Ajibade, Samuel-Soma M.; Flores, Denis Dante Corilla; Ayaz, Muhammad; Dodo, Yakubu Aminu; Areche, Franklin Ore; Adediran, Anthonia Oluwatosin; Oyebode, Oluwadare Joshua; Dayupay, Johnry P.
    Machine learning studies in the field of renewable energy are analysed here (REML). So, from 2012 to 2021, we looked at the publication tendencies (PT) and bibliometric analysis (BA) of REML research that was indexed by Elsevier Scopus. Key insights into the research landscape, scientific discoveries, and technological advancement were revealed by BA, while PT highlighted REML's important players, top cited papers, and financing organisations. In total, the PT discovered 1,218 works, 397 of which were conference papers and 106 were reviews. Because it spans the disciplines of science, technology, engineering, and mathematics, REML research is exhaustive, varied, and consequential. The most productive researchers, countries, and sponsors include Ravinesh C. Deo, the United States' National Renewable Energy Laboratory, and China's National Natural Science Foundation. Journal prestige and open access are valued by contributors, as seen by the success of Applied Energy and Energies. Productivity among REML's key stakeholders is boosted by collaborations and research funding. Keyword co-occurrence analysis was used to categorise REML research into four broad topic areas: systems, technologies, tools/technologies, and socio-technical dynamics. According to the results, ML plays a crucial role in the prediction, operation, and optimisation of RET as well as the design and development of RE-related materials.

| İstanbul Ticaret Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Örnektepe Mah. İmrahor Cad. No: 88/2 Z-42 Beyoğlu, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim