Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Fadipe, Samuel" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Küçük Resim Yok
    Öğe
    Improvement of Population Diversity of Meta-heuristics Algorithm Using Chaotic Map
    (Springer Science and Business Media Deutschland GmbH, 2022) Ajibade, Samuel-Soma M.; Ogunbolu, Mary O.; Chweya, Ruth; Fadipe, Samuel
    Particle swarm optimization (PSO) is a global optimization and nature-inspired algorithm known for its good quality and easily applied in various real-world optimization challenges. Nevertheless, PSO has some weaknesses such as slow convergence, converging prematurely and simply gets stuck at local optima. This study aims to solve the problem of deprived population diversity in the search process of PSO which causes premature convergence. Therefore, in this research, a method is brought to PSO to keep away from early stagnation which explains premature convergence. The aim of this research is to propose a chaotic dynamic weight particle swarm optimization (CHPSO) wherein a chaotic logistic map is utilized to enhance the populace diversity within the search technique of PSO with the aid of editing the inertia weight of PSO in an effort to avoid premature convergence. This study additionally investigates the overall performance and feasibility of the proposed CHPSO as a function selection set of rules for fixing problems of optimization. 8 benchmark functions had been used to assess the overall performance and seek accuracy of the proposed (CHPSO) algorithms and as compared with a few other meta-heuristics optimization set of rules. The outcomes of the experiments show that the CHPSO achieves correct consequences in fixing an optimization and has established to be a dependable and green metaheuristics algorithm for selection of features.

| İstanbul Ticaret Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Örnektepe Mah. İmrahor Cad. No: 88/2 Z-42 Beyoğlu, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim