Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Elbizim, Faruk Can" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Implementation and evaluation of face recognition based identification system
    (ICAT, 2017) Elbizim, Faruk Can; Kasapbaşı, Mustafa Cem
    Face recognition has been widely used and implemented to many systems for the purpose of authentication, identification, finding faces, etc. In this study Yale face database [1] is used which consist of 15 different people. For each of person there are 11 different images with different face expressions. In this study images are categorized as normal, normal and center light, normal and happy, normal with left light and right light. In order to recognize these faces 4 different face recognition methods namely Eigenface, Fisherface, LBPHface and SURF are utilized in the developed environment. In order to test the mentioned face recognition algorithms a software is developed using EmguCV in .NET environment. After evaluating and comparing the obtained confusion matrix amongst other the LBPHface method was found to be superior method with an average accuracy of 99%, it was ~98% SURF, ~97% for EigenFace and FisherFace. FicherFace was slightly better then the Eigenface method.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Implementation and Evaluation of Face Recognition Based Identification System
    (2017) Elbizim, Faruk Can; Kasapbaşı, Mustafa Cem
    Face recognition has been widely used and implemented to many systems for the purpose of authentication, identification, findingfaces, etc. In this study Yale face database [1] is used which consist of 15 different people. For each of person there are 11 different imageswith different face expressions. In this study images are categorized as normal, normal and centre light, normal and happy, normal withleft light and right light. In order to recognize these faces 4 different face recognition methods namely Eigenface, Fisherface, LBPHfaceand SURF are utilized in the developed environment. In order to test the mentioned face recognition algorithms a software is developedusing EmguCV in .NET environment. After evaluating and comparing the obtained confusion matrix amongst other the LBPHface methodwas found to be superior method with an average accuracy of 99%, it was 98% SURF, 97% for EigenFace and FisherFace. FicherFacewas slightly better then the Eigenface method.

| İstanbul Ticaret Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Örnektepe Mah. İmrahor Cad. No: 88/2 Z-42 Beyoğlu, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim