Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Demir, Emre" seçeneğine göre listele

Listeleniyor 1 - 1 / 1
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    İki düzeyli olasılık modellerinde klasik ve meta sezgisel optimizasyon tekniklerinin performansı üzerine bir çalışma
    (İstanbul Ticaret Üniversitesi, 2016) Akkuş, Özge; Demir, Emre
    Bağımlı değişkenin kategorik olduğu durumda, model parametrelerinin tahmininde kullanılan geleneksel yöntem, En Çok Olabilirlik Tahmin Edicisi (EÇOTE)’dir. Bu yöntemde olabilirlik eşitliklerinin çözümünde, klasik Newton-Raphson (NR) algoritması kullanılmaktadır. Ancak bu algoritma olabilirlik fonksiyonunun diferansiyellenebilir özellikte olduğu durum için uygundur. Bu çalışmada, iki düzeyli bağımlı değişken modellerinde klasik optimizasyon yöntemlerinin uygulanabilmesi için gerekli olan varsayımların sağlandığı durumda optimal parametre tahminlerine ulaşabilmek için NR algoritmasına alternatif olan Genetik Algoritma (GA) yaklaşımının etkinliği araştırılmıştır. Bu amaçla, ilk olarak Alopesia hastalığı verisi kullanılmıştır. Gerçek veri uygulamasına ek olarak yapay bir veri kümesi üzerinden elde edilen sonuçlar da sunulmuştur. Son olarak, yöntemlerin Matlab program kodları ve açıklamaları ayrıntılı bir biçimde verilmiştir.

| İstanbul Ticaret Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Örnektepe Mah. İmrahor Cad. No: 88/2 Z-42 Beyoğlu, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim