Arşiv logosu
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
Arşiv logosu
  • Koleksiyonlar
  • Sistem İçeriği
  • Analiz
  • Talep/Soru
  • Türkçe
  • English
  • Giriş
    Yeni kullanıcı mısınız? Kayıt için tıklayın. Şifrenizi mi unuttunuz?
  1. Ana Sayfa
  2. Yazara Göre Listele

Yazar "Catal, Cagatay" seçeneğine göre listele

Listeleniyor 1 - 2 / 2
Sayfa Başına Sonuç
Sıralama seçenekleri
  • Yükleniyor...
    Küçük Resim
    Öğe
    Identification of phantom movements with an ensemble learning approach
    (Elsevier Ltd, 2022) Akbulut, Akhan; Gungor, Feray; Tarakci, Ela; Aydin, Muhammed Ali; Zaim, Abdul Halim; Catal, Cagatay
    Phantom limb pain after amputation is a debilitating condition that negatively affects activities of daily life and the quality of life of amputees. Most amputees are able to control the movement of the missing limb, which is called the phantom limb movement. Recognition of these movements is crucial for both technology-based amputee rehabilitation and prosthetic control. The aim of the current study is to classify and recognize the phantom movements in four different amputation levels of the upper and lower extremities. In the current study, we utilized ensemble learning algorithms for the recognition and classification of phantom movements of the different amputation levels of the upper and lower extremity. In this context, sEMG signals obtained from 38 amputees and 25 healthy individuals were collected and the dataset was created. Studies of processing sEMG signals in amputees are rather limited, and studies are generally on the classification of upper extremity and hand movements. Our study demonstrated that the ensemble learning-based models resulted in higher accuracy in the detection of phantom movements. The ensemble learning-based approaches outperformed the SVM, Decision tree, and kNN methods. The accuracy of the movement pattern recognition in healthy people was up to 96.33%, this was at most 79.16% in amputees.
  • Yükleniyor...
    Küçük Resim
    Öğe
    Stacking-based ensemble learning for remaining useful life estimation
    (Springer, 2023) Ture, Begum Ay; Akbulut, Akhan; Zaim, Abdul Halim; Catal, Cagatay
    Excessive and untimely maintenance prompts economic losses and unnecessary workload. Therefore, predictive maintenance models are developed to estimate the right time for maintenance. In this study, predictive models that estimate the remaining useful life of turbofan engines have been developed using deep learning algorithms on NASA’s turbofan engine degradation simulation dataset. Before equipment failure, the proposed model presents an estimated timeline for maintenance. The experimental studies demonstrated that the stacking ensemble learning and the convolutional neural network (CNN) methods are superior to the other investigated methods. While the convolution neural network (CNN) method was superior to the other investigated methods with an accuracy of 93.93%, the stacking ensemble learning method provided the best result with an accuracy of 95.72%.

| İstanbul Ticaret Üniversitesi | Kütüphane | Açık Erişim Politikası | Rehber | OAI-PMH |

Bu site Creative Commons Alıntı-Gayri Ticari-Türetilemez 4.0 Uluslararası Lisansı ile korunmaktadır.


Örnektepe Mah. İmrahor Cad. No: 88/2 Z-42 Beyoğlu, İstanbul, TÜRKİYE
İçerikte herhangi bir hata görürseniz lütfen bize bildirin

DSpace 7.6.1, Powered by İdeal DSpace

DSpace yazılımı telif hakkı © 2002-2025 LYRASIS

  • Çerez Ayarları
  • Gizlilik Politikası
  • Son Kullanıcı Sözleşmesi
  • Geri Bildirim